Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основное уравнение молекулярно-кинетической теории идеальных газов.





 

Газ, заключенный в сосуд, оказывает давление на его стенки. Это давление - результат столкновений молекул со стенками. При каждом столкновении изменяется импульс молекулы, следовательно, на нее со стороны стенки действует сила. По третьему закону Ньютона на стенку со стороны молекулы действует такая же, но противоположно направленная сила. Статистически усредняя эту силу по времени и по всем молекулам, можно получить уравнение, связывающее давление газа со средней кинетической энергией поступательного движения его молекул. Вывод этого уравнения проводится в предположении, что газ не находится во внешнем силовом поле. Следовательно, давление на все стенки сосуда одинаково. Кроме того, учитываются столкновения только со стенками сосуда. Влиянием столкновений молекул между собой, как показал Д. К. Максвелл, можно пренебречь.

Основное уравнение молекулярно-кинетической теории газов имеет вид

,

где - суммарная кинетическая энергия поступательного движения всех N молекул газа, - масса и скорость i-ой молекулы.

Средняя кинетическая энергия поступательного движения молекул найдется как

.

Из основного уравнения и уравнения Клапейрона-Менделеева следует, что

.

Тогда

,

где m0- масса одной молекулы. Таким образом, средняя кинетическая энергия поступательного движения молекул газа прямо пропорциональна его термодинамической температуре. Из этого выражения следует, что при . Однако, в области сверхнизких температур неприменимы выводы классической физики. Там действуют законы квантовой статистики. Поэтому данное соотношение верно только при температурах далеких от 0 К.

Скорости различных молекул газа различны. Для характеристики средней быстроты движения молекул вводится понятие средней квадратичной скорости, определяемой как

.

Для среднеквадратичной скорости можно получить выражения

.

Например, молекулы водорода H2 при Т = 300 К в соответствии с этими выражениями имеют среднюю квадратичную скорость порядка 2•103 м/с.







Дата добавления: 2015-12-04; просмотров: 232. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия