Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

История SPI





Изобретатель интерфейса SPI — фирма Motorola [1]. Однако изобретение было сделано не на «пустом месте». Предшественником послужил интерфейс MicroWire фирмы National Semiconductor [2]. Автор статьи познакомился с интерфейсом SPI, работая с популярным семейством M68HC11 — практически первым, в котором SPI появился в конце 1980-х годов. Основное предназначение этого интерфейса — подключение к МК различных периферийных устройств. Очень быстро SPI стал весьма популярен по следующим причинам:

минимальные требования к аппаратной части подключаемого к МК устройства (сдвиговый регистр);

SPI-ведущего в минимальной конфигурации легко эмулировать программно, если в МК отсутствует аппаратная реализация SPI.

В последние два десятилетия многочисленные фирмы производят огромное количество различных периферийных узлов, подключаемых к МК через SPI (см., например, [3]). Это датчики физических величин (температуры, давления, ускорения и т. п.), устройства аналого-цифрового преобразования (АЦП, ЦАП, цифровые потенциометры), устройства преобразования интерфейсов (CAN-контроллеры, Ethernet-контроллеры), модули энергонезависимой памяти (Flash-карты MMC и SD, микросхемы EEPROM) и многие другие. В [4] (2005 год) утверждается, что «примерно 85% МК оснащены интерфейсом SPI».

Исторически, однако, сложилось так, что какой-либо официальный общепризнанный стандарт на интерфейс SPI отсутствует. Поэтому свойства подсистемы SPI в микросхемах разных производителей могут различаться как набором возможностей, так и их реализацией, что нередко вызывает затруднения при использовании. Разработчики преодолевают эти затруднения по большей части методом проб и ошибок либо обмениваясь опытом. В свою очередь производители МК нередко, в предположении, что SPI — это общеизвестный стандарт, описывают свойства подсистемы излишне кратко. Этим, в частности, грешит техническое описание МК семейства ADuC70xx фирмы Analog Devices [5].

Весьма нелегко найти источники, в которых бы систематически были описаны все (или хотя бы большинство) из возможных особенностей интерфейса SPI. Обычно встречаемая на форумах разработчиков рекомендация — взять техническое описание МК, в котором SPI имеется. Но там, естественно, описывается лишь подмножество опций, реализованных в конкретном МК.

Автору известно лишь несколько публикаций, в которых сделана попытка описать свойства SPI без привязки к конкретному типу МК [3, 4, 6, 14], и все они страдают неполнотой. Некоторые фирмы опубликовали свое «видение» того, что представляет собой SPI, например [1, 7–9], однако упомянутые документы в значительной степени «привязаны» к реализациям МК, выпускаемых этими фирмами.

Минимальная архитектура интерфейса и конфигурации

Минимальная архитектура изображена на рис. 1. Интерфейс SPI содержит четыре линии:

MOSI (Master Out Slave In) — выход данных ведущего (она же вход данных ведомого);

MISO (Master In Slave Out) — вход данных ведущего (она же выход данных ведомого);

SCK (Serial ClocK) — тактирование (синхронизация);

SS (Slave Select) — выбор ведомого.

Рис. 1. Структура связей и линии интерфейса SPI

Последовательный периферийный интерфейс - SPI - (Serial Peripheral Interface)

Главным составным блоком интерфейса SPI является обычный сдвиговый регистр, сигналы синхронизации и ввода/вывода битового потока которого и образуют интерфейсные сигналы. Таким образом, протокол SPI правильнее назвать не протоколом передачи данных, а протоколом обмена данными между двумя сдвиговыми регистрами, каждый из которых одновременно выполняет и функцию приемника, и функцию передатчика. Непременным условием передачи данных по шине SPI является генерация сигнала синхронизации шины. Этот сигнал имеет право генерировать только ведущий шины и от этого сигнала полностью зависит работа подчиненного шины.

Последовательный периферийный интерфейс (SPI) обеспечивает высокоскоростной синхронный обмен данными между микроконтроллерами ATmega603/103 и периферийными устройствами или между несколькими микроконтроллерами ATmega603/103.

Основные характеристики SPI интерфейса:

Полнодуплексный 3-проводный синхронный обмен данными.

Режим работы ведущий или ведомый.

Обмен данными с передаваемыми первыми старшим или младшим битами.

Четыре программируемые скорости обмена данными.

Флаг прерывания по окончании передачи.

Активация из Idle режима (только в режиме ведомого)

Соединения между ведущим и ведомым CPU, использующими SPI интерфейс, показаны на рис. 39. Вывод PB1(SCK) является выходом тактового сигнала ведущего микроконтроллера и входом тактового сигнала ведомого. По записи ведущим CPU данных в SPI регистр начинает работать тактовый генератор SPI и записанные данные сдвигаются через вывод выхода PB2(MOSI) ведущего микроконтроллера на вывод входа PB2 (MOSI) ведомого микроконтроллера. После сдвига одного байта тактовый генератор SPI останавливается, устанавливая флаг окончания передачи (SPIF). Если в регистре SPCR будет установлен бит разрешения прерывания SPI (SPIE), то произойдет запрос прерывания. Вход выбора ведомого PB0(SS), для выбора индивидуального SPI устройства в качестве ведомого, устанавливается на низкий уровень. При установке высокого уровня на выводе PB0(SS) порт SPI деактивируется и вывод PB2(MOSI) может быть использован в качестве вывода входа. Режим ведущий/ведомый может быть установлен и программным способом установкой или очисткой бита MSTR в регистре управления SPI.

Два сдвиговых регистра ведущего и ведомого микроконтроллеров можно рассматривать как один разнесенный 16-разрядный циклический сдвиговый регистр. См. Рис 39. При сдвиге данных из ведущего микроконтроллера в ведомый одновременно происходит сдвиг данных из ведомого микроконтроллера в ведущий, т.е. в течение одного цикла сдвига происходит обмен данными между ведущим и ведомым микроконтроллерами.

Рис. 38. Блок-схема SPI

В системе организовано одиночное буферирование передающей стороны и двойное буферирование на приемной стороне. Это означает то, что передаваемые символы не могут быть записаны в регистр данных SPI прежде, чем будет полностью завершен цикл сдвига.

С другой стороны, при приеме данных принимаемый символ должен быть считан из регистра данных SPI прежде, чем будет завершен прием следующего символа, в противном случае предшествовавший символ будет потерян.

При разрешенном SPI направления данных выводов MOSI, MISO, SCK и SS настраиваются в соответствии со следующей таблицей:

Таблица 22. Настройка выводов SPI







Дата добавления: 2015-12-04; просмотров: 355. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия