Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Z-ПРЕОБРАЗОВАНИЕ





 

Удобным средством изучения линейных разностных уравнений с начальными условиями и без них является дискретный аналог преобразования Лапласа или z-преобразование. Такое преобразование отображает полубесконечную последовательность дискретных значений на комплексную плоскость.

Определение Z - преобразования

Определив новую переменную

 

 

и подставив ее в уравнение преобразования Лапласа дискретной функции времени:

 

 

 

получаем z-преобразование импульсного сигнала х*(1):

 

 

Этот бесконечный ряд сходится, если все его члены |х(кТо)| ограничены и если справедливо условие |z|>l. Поскольку величина о может выбираться произвольно, сходимость имеет место для широкого класса функций х (кТо). Следует иметь в виду, что метод z- преобразования основывается на тех же предположениях, что и преобразование Лапласа, причем особенно важно выполнение условия х(кТ0)=0 при к<0.

Ниже приведены некоторые важнейшие теоремы, используемые при вычислении z-преобразований.

а) Линейность

б) Сдвиг по времени вправо

в) Сдвиг по времени влево

 

г) Изменение масштаба по переменной z

д) Начальное значение

е) Конечное значение

 

ж) Свертка

 

Обратное z-преобразование

В отличие от преобразоваия Лапласа, для которого прямой и обратный переходы x(t)-»x(s) и x(s)-»x(t) выполняются однозначно, z- преобразование x(t)-»x(z) и обратное z-преобразование x(z)-»*x(t) не обладают этим свойством. Объясняется это тем, что они не учитывают поведения функции х (t) в промежутках между моментами срабатывания квантователя. В то же время преобразование x(kTo)-»x(z) и обратное преобразование x(z)-»x(kTo) взаимно однозначны.

На практике обратное z-преобразование вычисляют, записывая функцию x(z) как сумму элементарных членов, содержащихся в таблицах z-преобразований, или просто поделив числитель х (z) на ее знаменатель. В последнем случае получается ряд вида

 

x(z) = c0+c1-z'1 + c2-z'2+... (2.21)

Из уравнения (2.21) следует, что и т.д.

 

 

 







Дата добавления: 2015-12-04; просмотров: 193. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия