Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Z-ПРЕОБРАЗОВАНИЕ





 

Удобным средством изучения линейных разностных уравнений с начальными условиями и без них является дискретный аналог преобразования Лапласа или z-преобразование. Такое преобразование отображает полубесконечную последовательность дискретных значений на комплексную плоскость.

Определение Z - преобразования

Определив новую переменную

 

 

и подставив ее в уравнение преобразования Лапласа дискретной функции времени:

 

 

 

получаем z-преобразование импульсного сигнала х*(1):

 

 

Этот бесконечный ряд сходится, если все его члены |х(кТо)| ограничены и если справедливо условие |z|>l. Поскольку величина о может выбираться произвольно, сходимость имеет место для широкого класса функций х (кТо). Следует иметь в виду, что метод z- преобразования основывается на тех же предположениях, что и преобразование Лапласа, причем особенно важно выполнение условия х(кТ0)=0 при к<0.

Ниже приведены некоторые важнейшие теоремы, используемые при вычислении z-преобразований.

а) Линейность

б) Сдвиг по времени вправо

в) Сдвиг по времени влево

 

г) Изменение масштаба по переменной z

д) Начальное значение

е) Конечное значение

 

ж) Свертка

 

Обратное z-преобразование

В отличие от преобразоваия Лапласа, для которого прямой и обратный переходы x(t)-»x(s) и x(s)-»x(t) выполняются однозначно, z- преобразование x(t)-»x(z) и обратное z-преобразование x(z)-»*x(t) не обладают этим свойством. Объясняется это тем, что они не учитывают поведения функции х (t) в промежутках между моментами срабатывания квантователя. В то же время преобразование x(kTo)-»x(z) и обратное преобразование x(z)-»x(kTo) взаимно однозначны.

На практике обратное z-преобразование вычисляют, записывая функцию x(z) как сумму элементарных членов, содержащихся в таблицах z-преобразований, или просто поделив числитель х (z) на ее знаменатель. В последнем случае получается ряд вида

 

x(z) = c0+c1-z'1 + c2-z'2+... (2.21)

Из уравнения (2.21) следует, что и т.д.

 

 

 







Дата добавления: 2015-12-04; просмотров: 193. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия