Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Z-ПРЕОБРАЗОВАНИЕ





 

Удобным средством изучения линейных разностных уравнений с начальными условиями и без них является дискретный аналог преобразования Лапласа или z-преобразование. Такое преобразование отображает полубесконечную последовательность дискретных значений на комплексную плоскость.

Определение Z - преобразования

Определив новую переменную

 

 

и подставив ее в уравнение преобразования Лапласа дискретной функции времени:

 

 

 

получаем z-преобразование импульсного сигнала х*(1):

 

 

Этот бесконечный ряд сходится, если все его члены |х(кТо)| ограничены и если справедливо условие |z|>l. Поскольку величина о может выбираться произвольно, сходимость имеет место для широкого класса функций х (кТо). Следует иметь в виду, что метод z- преобразования основывается на тех же предположениях, что и преобразование Лапласа, причем особенно важно выполнение условия х(кТ0)=0 при к<0.

Ниже приведены некоторые важнейшие теоремы, используемые при вычислении z-преобразований.

а) Линейность

б) Сдвиг по времени вправо

в) Сдвиг по времени влево

 

г) Изменение масштаба по переменной z

д) Начальное значение

е) Конечное значение

 

ж) Свертка

 

Обратное z-преобразование

В отличие от преобразоваия Лапласа, для которого прямой и обратный переходы x(t)-»x(s) и x(s)-»x(t) выполняются однозначно, z- преобразование x(t)-»x(z) и обратное z-преобразование x(z)-»*x(t) не обладают этим свойством. Объясняется это тем, что они не учитывают поведения функции х (t) в промежутках между моментами срабатывания квантователя. В то же время преобразование x(kTo)-»x(z) и обратное преобразование x(z)-»x(kTo) взаимно однозначны.

На практике обратное z-преобразование вычисляют, записывая функцию x(z) как сумму элементарных членов, содержащихся в таблицах z-преобразований, или просто поделив числитель х (z) на ее знаменатель. В последнем случае получается ряд вида

 

x(z) = c0+c1-z'1 + c2-z'2+... (2.21)

Из уравнения (2.21) следует, что и т.д.

 

 

 







Дата добавления: 2015-12-04; просмотров: 193. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия