Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Системы координат, применяемые в геодезии





1.3.1. Астрономические координаты

Положение точки на поверхности сферы определяется двумя сферическими координатами - широтой и долготой (рис.1.2: точка O - центр сферы, точка P - северный полюс, точка P' - южный полюс). Проведем линию экватора QQ, полученную от пересечения плоскости экватора и поверхности сферы.

Плоскость меридиана точки A, лежащей на поверхности сферы, проходит через отвесную линию точки A и ось вращения Земли PP'. Меридиан точки A - это линия пересечения плоскости меридиана точки A с поверхностью сферы.

Широта точки A - это угол, образованный отвесной линией точки A и плоскостью экватора; этот угол лежит в плоскости меридиана точки.

Широта отсчитывается в обе стороны от экватора (к северу - северная широта, к югу - южная) и изменяется от 0o до 90o.

Рис.1.2

Долгота точки A - это двугранный угол между плоскостью начального меридиана и плоскостью меридиана точки A. Начальный меридиан проходит через центр главного зала Гринвичской обсерватории, расположенной вблизи Лондона. Долготы изменяются от 00 до 1800, к западу от Гринвича - западные и к востоку - восточные. Все точки одного меридиана имеют одинаковую долготу.

Проведем через точку A плоскость, параллельную плоскости экватора; линия пересечения этой плоскости с поверхностью сферы называется параллелью точки; все точки параллели имеют одинаковую широту.

Проведем плоскость G, касательную к поверхности сферы в точке A; эта плоскость называется плоскостью горизонта точки A. Линия пересечения плоскости горизонта и плоскости меридиана точки называется полуденной линией; направление полуденной линии - с юга на север. Если провести полуденные линии двух точек, лежащих на одной параллели, то они пересекутся в точке на продолжении оси вращения Земли PP' и образуют угол , который называется сближением меридианов этих точек.

Широту и долготу точек местности определяют из астрономических наблюдений, потому они и называются астрономическими координатами.

1.3.2. Геодезические координаты

На поверхности эллипсоида вращения положение точки определяется геодезическими координатами - геодезической широтой B и геодезической долготой L (рис.1.3).

Геодезическая широта точки - это угол, образованный нормалью к поверхности эллипсоида в этой точке и плоскостью экватора. Геодезическая долгота точки - это двугранный угол между плоскостью начального меридиана и плоскостью меридиана точки.

Плоскость геодезического меридиана проходит через точку A и малую полуось эллипсоида; в этой плоскости лежит нормаль к поверхности эллипсоида в точке A. Геодезическая параллель получается от пересечения поверхности эллипсоида плоскостью, проходящей через точку A и параллельной плоскости экватора.

Рис.1.3

Различие геодезических и астрономических координат точки A зависит от угла между отвесной линией данной точки и нормалью к поверхности эллипсоида в этой же точке. Этот угол называется уклонением отвесной линии; он обычно не превышает 5». В некоторых районах Земли, называемых аномальными, уклонение отвесной линии достигает нескольких десятков дуговых секунд. При геодезических работах невысокой точности астрономические и геодезические координаты не различают; их общее название - географические координаты - используется довольно часто.

Две координаты - широта и долгота - определяют положение точки на поверхности относимости (сферы или эллипсоида). Для определения положения точки в трехмерном пространстве нужно задать ее третью координату, которой в геодезии является высота. В нашей стране счет высот ведется от уровенной поверхности, соответствующей среднему уровню Балтийского моря; эта система высот называется Балтийской.

1.3.3. Прямоугольные координаты

Систему плоских прямоугольных координат образуют две взаимноперпендикулярные прямые линии, называемые осями координат; точка их пересечения называется началом или нулем системы координат. Ось абсцисс - OX, ось ординат - OY.

Существуют две системы прямоугольных координат: левая и правая. В геодезии чаще применяется левая система (рис.1.4-а). По ложение точки в прямоугольной системе однозначно определяется двумя координатами X и Y; координата X выражает расстояние точки от оси ОY, координата Y - расстояние от оси OY.

Рис.1.4-а

Значения координат бывают положительные (со знаком «+») и отрицательные (со знаком «-») в зависимости от того, в какой четверти (квадранте) находится искомая точка (рис.1.4-a).

1.3.4. Полярные координаты

Систему полярных координат образует направленный прямой луч OX. Начало координат - точка O - называется полюсом системы, линия OX - полярной осью. Положение любой точки в полярной системе определяется двумя координатами: радиусом-вектором r (синоним полярное расстояние S) - расстоянием от полюса до точки, - и полярным углом β при точке O, образованным осью OX и радиусом вектором точки и отсчитываемым от оси OX по ходу часовой стрелки (рис.1.4-б).

Рис.1.4-б

Переход от прямоугольных координат к полярным и обратно для случая, когда начала обеих систем находятся в одной точке и оси OX у них совпадают (рис.1.4-в), выполняется по формулам: X = S ∙ Cosβ, Y = S ∙ Sinβ, tgβ = Y/X, .

Рис.1.4-в

Эти формулы получаются из решения ΔOBA по известным соотношениям между сторонами и углами прямоугольного треугольника.

Системы прямоугольных и полярных координат применяются в геодезии для определения положения точек на плоскости.

 







Дата добавления: 2015-06-15; просмотров: 884. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия