Определение координат точек методом засечек
2.1.6. Прямая угловая засечка Сначала рассмотрим так называемый общий случай прямой угловой засечки, когда углы β1 и β2 измеряются на двух пунктах с известными координатами, каждый от своего направления с известным дирекционным углом (рис.2.6). Рис.2.6 Исходные данные: XA, YA, αAC, XB, YB, αBD Измеряемые элементы: β1, β2 Неизвестные элементы: X, Y Если αAC и αBD не заданы явно, нужно решить обратную геодезическую задачу сначала между пунктами A и C и затем между пунктами B и D. Графическое решение. От направления AC отложить с помощью транспортира угол β1 и провести прямую линию AP; от направления BD отложить угол β2 и провести прямую линию BP; точка пересечения этих прямых является искомой точкой P. Аналитическое решение. Приведем алгоритм варианта, соответствующий общему случаю засечки: вычислить дирекционные углы линий AP и BP
написать два уравнения прямых линий для линии AP Y - YA= tgα1 ∙ (X - XA), для линии BP Y - YB= tgα2 ∙ (X - XB) (2.16) решить систему двух уравнений и вычислить неизвестные координаты X и Y:
Частным случаем прямой угловой засечки считают тот случай, когда углы β1 и β2 измерены от направлений AB и BA, причем угол β1 - правый, а угол β2 - левый (в общем случае засечки оба угла - левые) - рис.2.7. Рис.2.7 Решение прямой угловой засечки методом треугольника соответствует частному случаю засечки. Порядок решения при этом будет такой: решить обратную задачу между пунктами A и B и получить дирекционный угол αAB и длину b линии AB, вычислить угол γ при вершине P, называемый углом засечки,
используя теорему синусов для треугольника APB:
вычислить длины сторон AP (S1) и BP (S2), вычислить дирекционные углы α1 и α2:
решить прямую задачу от пункта A к точке P и для контроля - от пункта B к точке P. Для вычисления координат X и Y в частном случае прямой угловой засечки можно использовать формулы Юнга:
От общего случая прямой угловой засечки нетрудно перейти к частному случаю; для этого нужно сначала решить обратную геодезическую задачу между пунктами A и B и получить дирекционный угол αAB линии AB и затем вычислить углы в треугольнике APB при вершинах A и B ∟BAP = αAB - (αAC + β1) и ∟ABP = (αBD + β2) - αBA. Для машинного счета все рассмотренные способы решения прямой угловой засечки по разным причинам неудобны. Один из возможных алгоритмов решения общего случая засечки на ЭВМ предусматривает следующие действия: вычисление дирекционных углов α1 и α2, введение местной системы координат X'O'Y' с началом в пункте A и с осью O'X', направленной вдоль линии AP, и пересчет координат пунктов A и B и дирекционных углов α1 и α2 из системы XOY в систему X'O'Y' (рис.2.8): X'A = 0, Y'A = 0,
запись уравнений линий AP и BP в системе X'O'Y':
Рис.2.8 и совместное решение этих уравнений:
перевод координат X' и Y' из системы X'O'Y' в систему XOY:
Так как Ctgα2' = - Ctgγ и угол засечки γ всегда больше 0о, то решение (2.27) всегда существует. 2.1.7. Линейная засечка От пункта A с известными координатами XA, YA измерено расстояние S1 до определяемой точки P, а от пункта B с известными координатами XB, YB измерено расстояние S2 до точки P. Графическое решение. Проведем вокруг пункта A окружность радиусом S1 (в масштабе чертежа), а вокруг пункта B - окружность радиусом S2; точка пересечения окружностей является искомой точкой; задача имеет два решения, так как две окружности пересекаются в двух точках (рис.2.9). Исходные данные: XA, YA, XB, YB, Измеряемые элементы: S1, S2, Неизвестные элементы: X, Y. Аналитическое решение. Рассмотрим два алгоритма аналитического решения, один - для ручного счета (по способу треугольника) и один - для машинного счета. Рис.2.9 Алгоритм ручного счета состоит из следующих действий: решение обратной геодезической задачи между пунктами A и B и получение дирекционного угла αAB и длины b линии AB, вычисление в треугольнике ABP углов β1 и β2 по теореме косинусов:
вычисление угла засечки γ
вычисление дирекционных углов сторон AP и BP: пункт P справа от линии AB
пункт P слева от линии АВ
решение прямых геодезических задач из пункта A на пункт P и из пункта B на пункт P: 1-е решение
2-е решение
Результаты обоих решений должны совпадать. Алгоритм машинного решения линейной засечки состоит из следующих действий: решение обратной геодезической задачи между пунктами A и B и получение дирекционного угла αAB и длины b линии AB, введение местной системы координат X'O'Y' с началом в точке A и осью O'X', направленной вдоль линии AB, и пересчет координат пунктов A и B из системы XOY в систему X'O'Y':
запись уравнений окружностей в системе X'O'Y':
и совместное решение этих уравнений, которое предусматривает раскрытие скобок во втором уравнении и вычитание второго уравнения из первого:
откуда
и
Если искомая точка находится слева от линии AB, то в формуле (2.39) берется знак «-», если справа, то «+». пересчет координат X' и Y' точки P из системы X'O'Y' в систему XOY по формулам (2.2):
2.1.8. Обратная угловая засечка К элементарным измерениям относится и измерение угла β на определяемой точке P между направлениями на два пункта A и B с известными координатами XA, YA и XB, YB (рис.2.10). Однако, это измерение оказывается теоретически довольно сложным, поэтому рассмотрим его отдельно. Проведем окружность через три точки A, B и P. Из школьного курса геометрии известно, что угол с вершиной на окружности измеряется половиной дуги, на которую он опирается. Центральный угол, опирающийся на ту же дугу, измеряется всей дугой, следовательно, он будет равен 2β (рис.2.10). Рис.2.10 Расстояние b между пунктами A и B считается известным, и из прямоугольного треугольника FCB можно найти радиус R окружности:
Уравнение окружности имеет вид:
где XC и YC - координаты центра окружности. Их можно вычислить, решив либо прямую угловую, либо линейную засечку с пунктов A и B на точку C. В уравнении (2.42) X и Y - координаты любой точки окружности, в том числе и точки P, но для нахождения двух координат точки P одного такого уравнения недостаточно. Обратной угловой засечкой называют способ определения координат точки P по двум углам β1 и β2, измеренным на определяемой точке P между направлениями на три пункта с известными координатами A, B, C (рис.2.11). Графическое решение. Приведем способ Болотова графического решения обратной угловой засечки. На листе прозрачной бумаги (кальки) нужно построить углы β1 и β2 с общей вершиной P; затем наложить кальку на чертеж и, перемещая ее, добиться, чтобы направления углов на кальке проходили через пункты A, B, C на чертеже; переколоть точку P с кальки на чертеж. Исходные данные: XA, YA, XA, YB, XC, YC; Измеряемые элементы: β1, β2. Неизвестные элементы: X, Y. Рис.2.11 Аналитическое решение. Аналитическое решение обратной угловой засечки предусматривает ее разложение на более простые задачи, например, на 2 прямых угловых засечки и одну линейную, или на 3 линейных засечки и т.д. Известно более 10-ти способов аналитического решения, но мы рассмотрим только один - через последовательное решение трех линейных засечек. Предположим, что положение точки P известно, и проведем две окружности: одну радиусом R1 через точки A, B и P и другую радиусом R2 через точки B, C и P (рис.2.11). Радиусы этих окружностей получим по формуле (2.41):
Если координаты центров окружностей - точек O1 и O2 будут известны, то координаты точки P можно определить по формулам линейной засечки: из точки O1 по расстоянию R1 и из точки O2 - по расстоянию R2. Координаты центра O1 можно найти по формулам линейной засечки из точек A и B по расстояниям R1, причем из двух решений нужно взять то, которое соответствует величине угла β1: если β1<90o, то точка O1 находится справа от линии AB, если β1>90o, то точка O1 находится слева от линии AB. Координаты центра O2 находятся по формулам линейной засечки из точек B и C по расстояниям R2, и одно решение из двух возможных выбирается по тому же правилу: если β2<90o, то точка O2 находится справа от линии BC, если β2>90o, то точка O2 находится слева от линии BC. Задача не имеет решения, если все четыре точки A, B, C и P находятся на одной окружности, так как обе окружности сливаются в одну, и точек их пересечения не существует. 2.1.9. Комбинированные засечки В рассмотренных способах решения засечек количество измерений принималось теоретически минимальным (два измерения), обеспечивающим получение результата. На практике для нахождения координат X и Y одной точки, как правило, выполняют не два, а три и более измерений расстояний и углов, причем эти измерения выполняются как на исходных пунктах, так и на определяемых; такие засечки называются комбинированными. Понятно, что в этом случае появляется возможность контроля измерений, и, кроме того, повышается точность решения задачи. Каждое измерение, вводимое в задачу сверх теоретически минимального количества, называют избыточным; оно порождает одно дополнительное решение. Геодезические засечки без избыточных измерений принято называть однократными, а засечки с избыточными измерениями - многократными. При наличии избыточных измерений вычисление неизвестных выполняют методом уравнивания. Алгоритмы строгого уравнивания многократных засечек применяются при автоматизированном счете на ЭВМ; для ручного счета используют упрощенные способы уравнивания. Упрощенный способ уравнивания какой-либо многократной засечки (n измерений) предусматривает сначала формирование и решение всех возможных вариантов независимых однократных засечек (их число равно n-1), а затем - вычисление средних значений координат точки из всех полученных результатов, если они различаются между собой на допустимую величину.
|