Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Измерение горизонтальных углов в теодолитном ходе





Измерения угла выполняется строго по методике, соответствующей способу измерения; известно несколько способов измерения горизонтальных углов: это способ отдельного угла (способ приемов), способ круговых приемов, способ во всех комбинациях и др.

Способ отдельного угла. Измерение отдельного угла складывается из следующих действий:

наведение трубы на точку, фиксирующую направление первой стороны угла (рис.4.16), при круге лево (КЛ), взятие отсчета L1;

поворот алидады по ходу часовой стрелки и наведение трубы на точку, фиксирующую направление второй стороны угла; взятие отсчета L2,

вычисление угла при КЛ (рис.4.16):

βл = L2 - L1,

перестановка лимба на 1o - 2o для теодолитов с односторонним отсчитыванием и на 90o - для теодолитов с двухсторонним отсчитыванием,

переведение трубы через зенит и наведение ее на точку, фиксирующую направление первой стороны угла, при круге право (КП); взятие отсчета R1,

поворот алидады по ходу часовой стрелки и наведение трубы на точку, фиксирующую направление второй стороны угла; взятие отсчета R2,

вычисление угла при КП:

βп = R2 - R1,

при выполнении условия |βл - βп| < 1.5 * t, где t - точность теодолита, вычисление среднего значения угла:

βср = 0.5 * (βл + βп).

Измерение угла при одном положении круга (КЛ или КП) составляет один полуприем; полный цикл измерения угла при двух положениях круга составляет один прием.

Запись отсчетов по лимбу и вычисление угла производятся в журналах установленной формы.

Способ круговых приемов. Если с одного пункта наблюдается более двух направлений, то часто применяют способ круговых приемов. Для измерения углов этим способом необходимо выполнить следующие операции (рис.4.17):

при КЛ установить на лимбе отсчет, близкий к нулю, и навести трубу на первый пункт; взять отсчет по лимбу.

Рис.4.16 Рис.4.17

вращая алидаду по ходу часовой стрелки, навести трубу последовательно на второй, третий и т.д. пункты и затем снова на первый пункт; каждый раз взять отсчеты по лимбу.

перевести трубу через зенит и при КП навести ее на первый пункт; взять отсчет по лимбу.

вращая алидаду против хода часовой стрелки, навести трубу последовательно на (n-1),..., третий, второй пункты и снова на первый пункт; каждый раз взять отсчеты по лимбу.

Затем для каждого направления вычисляют средние из отсчетов при КЛ и КП и после этого - значения углов относительно первого (начального) направления.

Способ круговых приемов позволяет ослабить влияние ошибок, действующих пропорционально времени, так как средние отсчеты для всех направлений относятся к одному физическому моменту времени.

Влияние внецентренности теодолита на отсчеты по лимбу. Пусть на рис.4.18 ось вращения алидады пересекает горизонтальную плоскость в точке B', а точка B - проекция вершины измерямого угла на ту же плоскость. Расстояние между точками B и B' обозначим l, расстояние между пунктами B и A - S.

Рис.4.18 Рис.4.19

Если бы теодолит стоял в точке B, то при наведении трубы на точку A отсчет по лимбу был бы равен b. Перенесем теодолит в точку B', сохранив ориентировку лимба; при этом отсчет по лимбу при наведении трубы на точку A изменится и станет равным b'; различие этих отсчетов называется ошибкой центрировки теодолита и обозначается буквой c.

Из треугольника BB'A имеем:

откуда

или по малости угла c

(4.18)

Величина l называется линейным элементом центрировки, а угол Q - угловым элементом цетрировки; угол Q строится при проекции оси вращения теодолита и отсчитывается от линейного элемента по ходу часовой стрелки до направления на наблюдаемый пункт A.

Правильный отсчет по лимбу будет:

b = b' + c. (4.19)

Влияние редукции визирной цели на отсчеты по лимбу.

Если проекция визирной цели A' на горизонтальную плоскость не совпадает с проекцией центра наблюдаемого пункта A, то возникает ошибка редукции визирной цели (рис.4.19). Отрезок AA' называется линейным элементом редукции и обозначается l1; угол Q1 называется угловым элементом редукции; он строится при проекции визирной цели и отсчитывается от линейного элемента по ходу часовой стрелки до направления на пункт установки теодолита. Обозначим правильный отсчет по лимбу - b, фактический - b', ошибка в направлении BA равна r. Из треугольника BAA' можно написать:

откуда

или по малости угла r

(4.20)

Правильный отсчет по лимбу будет

b = b' + r. (4.21)

Наибольшего значения поправки c и r достигают при Θ = Θ1 = 90o (270o), когда .

В этом случае

В практике измерения углов применяют два способа учета внецентренности теодолита и визирной цели.

Первый способ заключается в том, что центрирование выполняют с такой точностью, которая позволяет не учитывать ошибку внецентренности. Например, при работе с техническими теодолитами допустимое влияние ошибок центрирования теодолита и визирной цели можно принять c = r = 10"; при среднем расстоянии между точками S = 150 м получается, что l = l1 = 0.9 см, то-есть, теодолит или визирную цель достаточно устанавливать над центром пункта с ошибкой около 1 см. Для центрирования с такой точностью можно применить обычный отвес.

Центрирование теодолита или визирной цели с точностью 1-2 мм можно выполнить лишь с помощью оптического центрира.

Второй способ заключается в непосредственном измерении элементов l и Θ, l1 и Θ1, вычислении поправок c и r по формулам (4.18) и (4.20) и исправлении результатов измерений этими поправками по формулам (4.19) и (4.21).

 







Дата добавления: 2015-06-15; просмотров: 1154. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия