Экологические последствия антропогенного воздействия на гидросферу суши
Антропогенное воздействие на поверхностные водоемы и водотоки определяется потребностями человека в питьевой и технической воде, отражающимися в структуре водопотребления. На примере России можно видеть, что основными потребителями поверхностных вод являются промышленность, покрытие потребностей которой за счет природных поверхностных водоисточников составляет около 35 % общего водопотребления; сельское хозяйство, включающее орошение засушливых земель, и теплоэнергетика, доля которых составляет соответственно 26 и 24 %. Далее идут коммунальное хозяйство - 4 % и рыболовство - 1 %. При этом необходимо отметить, что поверхностные воды используются значительно больше, чем воды из подземных источников, на которые приходится всего около 10 % общего водопотребления. Растущие потребности в питьевой и технической воде порождают ряд экологических проблем, основными из которых являются: 1) истощение запасов и понижение уровня воды в поверхностных водоемах; 2) изменение качества воды в связи с загрязнениями промышленными и сельскохозяйственными стоками, нефтепродуктами, тяжелыми металлами; 3) термическое загрязнение и радиационное заражение водоемов; 4) изменение режима рек, форм проявления и масштабов эрозионно-аккумулятивной деятельности; 5) появление наведенных очагов землетрясений в пределах асейсмичных территорий; 6) истощение биологической продуктивности водоемов. Истощение запасов поверхностных вод и, как следствие, понижение уровня воды (обмеление водоемов) определяется двумя факторами. К первому относятся ежегодные безвозвратные потери при хозяйственном использовании. Эти потери, в зависимости от качества и количества систем оборотно-повторного использования, составляют от 10 до 25 % ежегодного технологического расхода воды. Вторым фактором, существенно влияющим на истощение запасов, являются водохранилища, особенно каскады водохранилищ, создаваемые для решения различных хозяйственных задач: гарантированного водообеспечения населения, использования гидропотенциала рек, снижения опасности наводнений и подтопления территорий, улучшения условий для судоходства, рыболовства, лесосплава, создания рекреационных зон. Помимо крупных сооружается и большое число малых водохранилищ, имеющих массовое распространение в аридной зоне. Водохранилища являются объектами безвозвратных потерь поверхностного стока за счет испарения воды с поверхности. Их влияние на общее обмеление многих поверхностных водоемов становится все большим в связи с наблюдающейся тенденцией к общему потеплению климата. Так, безвозвратные потери речного стока Амударьи и Сырдарьи, используемого на орошение окружающих земель, стимулировали Аральскую экологическую катастрофу. Строительство в верховье р. Или в конце 60-х гг. Капчагайского водохранилища недалеко от г. Алма-Аты вызвало резкое обмеление озера Балхаш и привело к почти полной утрате его хозяйственного значения. В настоящее время наблюдается отчетливая тенденция к общему снижению уровня воды в системе Верхневолжского каскада водохранилищ: Иваньковском, Угличском, Рыбинском - в связи с сокращением годового количества атмосферных осадков и потеплением климата. Изменение качества воды связано с загрязнениями промышленными и сельскохозяйственными стоками, нефтепродуктами. Основными загрязнителями поверхностных водоисточников являются сточные воды промышленных предприятий, сельского и коммунального хозяйства. Значительный вклад в загрязнения вносят аварии на нефте- и газопроводах. Объемы промышленного водоиспользования зависят от структуры промышленных предприятий и уровня применяемых технологий. Наиболее водоемкими являются теплоэнергетика, черная и цветная металлургия, машиностроение, нефтехимическая и деревообрабатывающая промышленность. Особенности сельскохозяйственного водоснабжения - массовость потребителей и малые объемы потребления. В коммунальном хозяйстве большая часть (88 %) потребляемой воды используется для нужд населения городов, имеющих централизованные системы водоснабжения. Несмотря на обширную сеть очистных сооружений, только около 70 % (на территории России) очищается до нормативных требований. Остальные стоки сбрасываются неочищенными или недостаточно очищенными. С ними в природные водоисточники поступают огромные количества органических веществ, твердых взвешенных частиц, нефтепродуктов, тяжелых металлов, сульфатов, хлоридов, соединений фосфора, азота, нитратов. Применительно к России общий объем ежегодных загрязнений, поступающих в водоемы, достигает 50 млн. т различных веществ. Из них на долю сельскохозяйственных предприятий приходится 55 %, коммунальной сферы - 37 %, промышленности - около 8 %. В нашей стране с 1972 г. ведутся систематические наблюдения за качеством поверхностных вод (в 1990 г. контролировалось 2258 водных объектов). Многие объекты имеют высокую степень загрязнения - 10, некоторые до 650 ПДК по соединениям металлов, нефтепродуктам, фенолам и другим органическим, азотным, серным и прочим веществам. Для непроточных водоемов особо неблагоприятно явление эвтрофикации. Если в прежние геологические периоды этот процесс длился тысячи - миллионы лет, то в наше время - десятилетия и менее, в зависимости от антропогенного поступления биогенных веществ. В США и Канаде работы по спасению эвтрофных озер начались в 70-х гг. - только на очистку вод бассейна Великих озер было затрачено 6,6 млрд. долл. В 80-х годах угроза была устранена. Помимо медико-санитарных последствий изменение качества воды активизирует различные геологические процессы (химическое выветривание, карстообразование и др.), негативно влияет на биологическую продуктивность водоемов. Термическое загрязнение водоемов связано с работой тепловых и атомных электростанций. Основной объем используемой воды (до 90-95 %) предназначается на отведение тепла от конденсаторов турбин. При этом доля безвозвратного потребления составляет 4-5 %. Существуют различные системы охлаждения технологической воды. Широкое развитие, в частности, получили специальные водохранилища - охладители при электростанциях. Нагретые сточные воды ТЭС и АЭС (охлаждающая вода), поступая в водоемы, приводят к их "тепловому загрязнению", способствующему массовому размножению фитопланктона -"цветению воды". Поверхностные водоемы используются также для создания хранилищ вредных, в том числе радиоактивных, отходов (хвостохранилища на горнодобывающих и обогатительных предприятиях). Широко известен пример предприятия "Маяк" (Челябинск-40), в течение длительного времени использующего в качестве накопителя радиоактивных отходов озеро Кыштым. Переполнение водоемов-хранилищ отходов и природные катастрофы с ними приводят (могут приводить) к необратимому геохимическому загрязнению и радиационному заражению местности. Обмеление водоемов в результате хозяйственной деятельности, создание на реках искусственных водохранилищ, использование рек, озер и водохранилищ в качестве транспортных магистралей с применением крупнотоннажных речных судов приводит к изменению гидродинамического режима, форм и масштабов проявления геологических процессов: глубинной и боковой эрозии, руслового и пойменного осадконакопления, аккумуляции аллювия в устьях речных систем. Все это, в свою очередь, меняет условия воспроизводства биологических ресурсов, рыболовства и судоходства. В последнем случае приходится проводить работы, направленные на выправление судоходной обстановки: землечерпание, канализирование рек, регулирование стока гидротехническими сооружениями, инженерную защиту берегов. Возбужденная сейсмическая активность в районах возведения водохранилищ. "Возбужденной" или "наведенной" называют сейсмичность, вызванную деятельностью человека. В настоящее время накопилось достаточно статистических данных, свидетельствующих о связи возбужденной сейсмичности с периодами заполнения водохранилищ. К началу 70-х гг. в мире было известно 35 случаев усиления сейсмической активности при создании водохранилищ. Часть геологической среды, располагающаяся под акваторией будущего водохранилища, находится в естественном напряженном состоянии, обусловленном силами, воздействующими на определенный объем породы (гравитационных, тектонических и др.). В толще пород возникают напряжения - внутренние силы сопротивления, уравновешивающие внешние нагрузки и отнесенные к единице площади. Выделяют общее напряжение (Р), нормальное (а), располагающееся перпендикулярно к выбранной площадке (рис. 32), и касательное (т), ориентированное вдоль нее. Ориентированные в пространстве максимальные нормальные и касательные напряжения создают поле напряжения. Причиной наведенных землетрясений могут являться резкие изменения естественного напряженного состояния и поля напряжения, вызванные давлением огромного столба воды заполняющегося водохранилища. Это приводит к кратковременным смещениям по разрывам, существующим на глубине, и определяет распространение упругих сейсмических волн, достигающих поверхности и вызывающих ее сотрясение. Возбужденная сейсмическая активность - мелкофокусная и проявляется не только в сейсмически активных молодых горно-складчатых поясах, но и на древних стабильных (асейсмичных) платформах. Землетрясения концентрируются вдоль ранее существовавших разломов. Причем эпицентры располагаются на расстоянии 10-15 км от водохранилища, очаги - на глубине 6-8 км. Активность усиливается особенно явно после подъема уровня воды более чем на 100 м. Частота вызванных толчков в большинстве случаев связана не столько с высотой уровня воды, сколько со скоростью и величиной перепада уровня воды в водохранилище. При одном и том же давлении столба воды вероятность толчков тем больше, чем большую площадь занимает водохранилище. Периоды усиления и ослабления сейсмичности могут продолжаться по нескольку лет (рис. 33). В 1935 г. в США на р. Колорадо была сооружена плотина Гувер, и началось заполнение водохранилища Мид. Год спустя, после начала заполнения, начались сейсмические толчки. Количество слабых землетрясений в 1937-1947 гг. измерялось тысячами. К 1939 г. водохранилище заполнилось. В мае того же года область была потрясена сильным толчком, выделившим столько энергии, сколько все предыдущие землетрясения, вместе взятые. На полуострове Индостан, в сейсмической платформе, на р. Койна в 1961 г. началось заполнение водохранилища объемом около 3 трлн м3. В 1967 г. произошло 8-9-балльное землетрясение, унесшее 180 человеческих жизней. 2000 человек получили ранения. Эпицентр землетрясения располагался в 3-5 км от плотины. Радиус области, ощутившей землетрясение, составил 700 км. Водохранилище имело размеры 50 км в длину и до 5 км в ширину. К моменту интенсивного заполнения Нурекского водохранилища на р. Вахш в Таджикистане (1972) было зарегистрировано в конце 1972 г. 133 землетрясения. При этом землетрясения группировались под водохранилищем вблизи плотины, а по мере его быстрого наполнения несколько смещались, так как перемещался центр нагрузки столба воды. Второй этап интенсивного заполнения начался в июле - августе 1976 г. И снова возросло число толчков. Заполнение не каждого водохранилища вызывает землетрясение. Однако именно эта неоднозначность заставляет ожидать и не исключать возможности сейсмических последствий. Истощение биологической продуктивности водоемов. Около 30 % улова в водоемах приходится на долю пресноводных рыб группы туводных, проходных и полупроходных. Из основных природных факторов, определяющих степень рыбопродуктивности, главная роль принадлежит речному стоку, так как от него зависит водный, солевой и гидробиологический режим рек, озер, водохранилищ, а также размножение ценных видов проходных и полупроходных рыб. Интенсивное антропогенное воздействие на гидрологический режим и качество воды (регулирование стока водохранилищами, снижение стока, загрязнение водоемов) уменьшает продуктивность водоемов суши и приводит к сокращению уловов рыбы. Антропогенные изменения рек России за историческое время. Существуют древние карты, а также летописи, которые свидетельствуют, что Волга у Астрахани протекала вдоль стен Кремля, Якутский острог был основан на берегу Лены, Серпухов и Рязань - на берегах Оки. По картам изменения русел рек бассейнов рp. Волги и Дона можно проследить с XVIII в. (карта Дона адмирала Крюйса - 1704 г., карты Суры конца XVIII - начала XIX в.), северных и многих других рек - с середины XIX в., Западной Сибири - с начала XX в., Восточной Сибири - с 20-30-х гг. XX в. Р.С. Чалов выделяет два периода развития антропогенной нагрузки на реки. Непосредственное влияние хозяйственной деятельности на русла в ранний период было ограниченным, хотя антропогенное преобразование рек началось еще в XVIII в. в горнопромышленных районах при создании многочисленных заводских прудов на Урале. В ранний период (середина XIX - начало 50-х годов XX в.) воздействие человека на реки проявлялось в сокращении речной сети под влиянием ускоренной эрозии водосборов из-за вырубки лесов и распашки земель. Сравнение карт XIX в. и современных показывает, что в степной зоне сокращение речной сети за указанный период составило 30 %. Русло верхней Оки, например, за счет регрессивной (против течения) эрозии повышалось в Орле на 1,5-2 см в год. В Белеве с конца XIX в. до начала 40-х гг. XX века скорость перемещения дна русла вверх по течению составляла 0,6 см в год. В конце XIX - начале XX в. на отдельных реках, протекающих в основном в западных губерниях России, проводились работы по регулированию русла для навигационных целей (Днестр, Неман). В 30-е гг. такому преобразованию подверглось русло р. Белой. Эти работы выполнены подобно выправлению западноевропейских рек - стеснением русел дамбами (полузапрудами), нередко двусторонними, в результате чего их ширина уменьшилась в 1,5-2 раза, глубина увеличилась. Однако работы по совершенствованию водных путей были ограничены. Небольшие размеры выправления рек были связаны с тем, что естественные глубины соответствовали требуемым габаритам судов того времени и др. Со временем воздействие на реки увеличивалось. Были построены Волховская ГЭС (1926), практически не повлиявшая на врезанное в коренные берега русло Волхова, другие узлы с водохранилищами. Начались работы по созданию крупных каналов в европейской части России, по которым осуществляется переброска вод из бассейна р. Кубани в засушливые районы. Переброска вод из верхней Волги в р. Москву привела к изменению русловых деформаций в последней. То же, но в больших масштабах произошло на реках, принимающих воды из мелиоративных каналов на юге европейской части территории России, - их русла врезались на несколько метров и превратились в подобие каньонов. Поздний (современный) период интенсивного антропогенного воздействия на реки приходится на начало 50-х - конец 80-х гг. Прудами было изменено большинство малых рек лесостепной и степной зон европейской части территории России, юга Западной Сибири, Алтая. Развернулось крупное гидроэнергетическое строительство. Волга, Кама, Ангара, верхний Енисей превратились в каскады водохранилищ. Водохранилища существенно изменили реки Дон, Иртыш, Обь, Вилюй, Зею, Кубань. Их создание нарушило естественный гидрологический режим, прервало транзитный твердый сток. В результате глубинной эрозии в нижнем течении рек произошло понижение уровней воды до 70 см, зоны размывов русел смещались вниз по течению со скоростью 0,5-25 км в год. Русла рек изменились на большом их протяжении (до сотен километров) - увеличилась кривизна излучин (Дон), отмерли боковые рукава, образовались новые острова (Обь, Енисей). Существенным изменениям подвергались реки выше водохранилищ, где стала происходить активная аккумуляция наносов. Скорость повышения отметок дна в этой зоне достигла нескольких сантиметров в год, распространение аккумуляции - нескольких километров в год. С начала позднего периода сооружались крупные мелиоративные системы на юге страны. Отвод стока в магистральные каналы также активизировало техногенно обусловленную аккумуляцию и соответственно обмеление русел. Русла рек, в которые перебрасывались воды, наоборот, размывались. Так, сток р. Большой Егорлык увеличился после постройки в конце 40-х годов Невинномысского канала почти в 10 раз. Глубина размыва только за три первых года составила 2,2 м; за 10 лет русло превратилось в каньон глубиной 15 м и шириной 25-40 м. Широкого развития достигла добыча строительных материалов (песок, песчано-гравийная смесь, гравий, галька) из речных русел. Часто из рек извлекался древний аллювий, подстилавший их дно. Это привело к изменению рельефа русла рек, увеличению площади поперечного сечения, понижению уровней воды. В Томске уровни воды за последние 30 лет понизились на 2,6 м, в Омске за 20 лет - на 1,4 м, на Оке в районе Калуги - на 1,4 м. На протяженных участках рек (десятки километров) ниже карьеров развивается трансгрессивная, распространяющаяся вниз по течению реки, эрозия, а выше карьеров - регрессивная эрозия. В восточных районах многие реки были изменены вследствие разработки месторождений россыпных полезных ископаемых. Значительный размах в 60-80-е годы получают дноуглубительные и выправительные работы, которые привели к 1,5-2-кратному увеличению глубин на перекатах, закреплению форм русла, прекращению периодичности их развития. На Дону и Иртыше были искусственно спрямлены многие излучины. На Оби, ниже Новосибирска, объем дноуглубления вырос за 30 лет с 6,5 тыс. до 50-60 тыс. м на 1 км водного пути, вследствие чего глубины увеличились в 1,5 раза. Существенно изменилась форма поперечного сечения русла рек на перекатах, где был удален мешающий грунт, и тем самым повысилась пропускная способность русла. Наиболее заметные изменения русловых процессов отмечаются на крупных реках, непосредственно прилегающих к высокоурбанизированным территориям, где совокупно действуют несколько техногенных факторов: возведение крупного гидроузла, добыча стройматериалов, дноуглубительные и выправительные работы, горнопромышленные узлы типа Норильского, горнообогатительные комбинаты типа Гайского и т.п. На малые реки локальное воздействие оказывают лесозаготовки, лесосплав, освоение нефтегазовых месторождений.
|