Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение. Общая схема исследования функций:





 

Общая схема исследования функций:

 

1. Найти область определения функции.

2. Исследовать поведение функции на концах области определения. Найти точки разрыва функции и ее односторонние пределы в этих точках. Найти вертикальные асимптоты.

3. Выяснить, является функция четной, нечетной, периодической.

4. Найти точки пересечения графика функции с осями координат и интервалы знакопостоянства функции.

5. Найти наклонные асимптоты графика функции.

6. Найти точки экстремума и интервалы возрастания и убывания функции.

7. Найти точки перегиба графика функции и интервалы его выпуклости и вогнутости.

8. Построить схематический график функции, используя все полученные результаты.

 

1. Функция не определена, если

Область определения:

2. Т.к. - точка разрыва функции исследуем поведение функции в этой точке слева и справа

Т.к. пределы равны значит точка разрыва второго рода.

Следовательно, прямая - вертикальная асимптота.

1. Проверим функцию на четность, нечетность. Напомним, что функция называется четной (нечетной) если выполнены два условия:

  1. Область определения симметрична относительно начала координат

Если четная, то график симметричен относительно оси ординат, а для нечетной – относительно начала координат.

Функция не является ни четной, ни нечетной, т.е. общего вида.

Функция не является периодической

4. Найдем точки пересечения графика функции с осями координат

Найдем промежутки знакопостоянства функции

5. Найдем наклонные асимптоты где

Для k и b вычисляются аналогично

6. Найдем точки экстремума функции и промежутки монотонности.

Возрастание и убывание функции характеризуется знаком ее производной : если в некотором интервале , то в этом интервале функция возрастает, а если , то функция убывает в этом интервале.

Функция может иметь экстремум только в тех точках, которые принадлежат области определения и в которых ее производная равна нулю или не существует. Если меняет знак с “+” на “-” при переходе через исследуемую точку, то эта точка максимума, если меняет знак с “-” на “+” при переходе через исследуемую точку, то эта точка является точкой минимума. Если не меняет знак при переходе через точку , в этой точке экстремума нет.

Найдем все точки из области определения функции , в которых производная обращается в ноль или не существует.

 

 

Составим таблицу

 

-2    
+   + не существует -   +
  не существует
  возрастает   возрастает   убывает min возрастает

 

Функция возрастает на интервалах , , и убывает на интервале . Точка есть точка минимума

7. Найдем точки перегиба и промежутки выпуклости и вогнутости функции

Напомним, что график функции называется выпуклым на интервале , если в каждой точке этого интервала график лежит ниже любой своей касательной. График функции называется вогнутым на интервале , если в каждой точке этого интервала график лежит выше любой своей касательной.

 

Точки, в которых функция меняет выпуклость на вогнутость или наоборот, называются точками перегиба.

Перегиб возможен в точках, в которых равна нулю или не существует. Если на интервале , то график функции является выпуклым на этом интервале, если же , то на интервале график вогнутый .

 

Найдем точки перегиба

 

Составим таблицу

 

-2  
-   + не существует +
  не существует

 

Точка - точка перегиба.

Дополнительные точки:

8. Построим график функции, используя результаты исследования.

 

 

 

Замечание:При построении графика масштабы по оси OX и OY могут не совпадать.








Дата добавления: 2015-06-15; просмотров: 352. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия