Вопрос 15 Прямая геодезическая задача 2.3.1. Прямая геодезическая задача
В геодезии часто приходится передавать координаты с одной точки на другую. Например, зная исходные координаты точки А (рис.23), горизонтальное расстояние SAB от неё до точки В и направление линии, соединяющей обе точки (дирекционный угол αAB или румб rAB), можно определить координаты точки В. В такой постановке передача координат называется прямой геодезической задачей. Рис. 23. Прямая геодезическая задача Для точек, расположенных на сфероиде, решение данной задачи представляет значительные трудности. Для точек на плоскости она решается следующим образом. Дано: Точка А(XA, YA), SAB и αAB. Найти: точку В(XB, YB). Непосредственно из рисунка имеем: ΔX = XB – XA; ΔY = YB – YA. Разности ΔX и ΔY координат точек последующей и предыдущей называются приращениями координат. Они представляют собой проекции отрезка АВ на соответствующие оси координат. Их значения находим из прямоугольного прямоугольника АВС: ΔX = SAB · cos αAB; ΔY = SAB · sin αAB. Так как в этих формулах SAB всегда число положительное, то знаки приращений координат ΔX и ΔY зависят от знаков cos αAB и sin αAB. Для различных значений углов знаки ΔX и ΔY представлены в табл.1.
Обратная геодезическая задача заключается в том, что при известных координатах точек А (XA, YA) и В (XB, YB) необходимо найти длину SAB и направление линии АВ: румб rAB и дирекционный угол αAB (рис.24). Рис. 24. Обратная геодезическая задача Даннная задача решается следующим образом. Сначала находим приращения координат: ΔX = XB – XA; ΔY = YB – YA. Величину угла rAB определем из отношения
.
По знакам приращений координат вычисляют четверть, в которой располагается румб, и его название. Используя зависимость между дирекционными углами и румбами, находим αAB. Для контроля расстояние SAB дважды вычисляют по формулам:
Расстояние SAB можно определить также по формуле
|