Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теория нелинейной теплопроводности





Уравнение теплопроводности, учитывающее зависимость свойств среды от температуры и нелинейную зависимость от температуры мощности распределенных в объеме тепловых источников, является квазилинейным параболическим уравнением вида (1.1)

Нелинейность задачи теплопроводности может быть также обусловлена нелинейностью граничного условия. Такие задачи, в отличие от задач с внутренней нелинейностью, обусловленной нелинейностью уравнения, часто называют задачами с внешней нелинейностью.

Нелинейное граничное условие на поверхности тела может иметь вид (1.2), где функция в нелинейным образом зависит от температуры.

К таким условиям, например, относится условие на поверхности излучающего тела или условие конвективного теплообмена, в котором коэффициент теплообмена ат зависит от температуры поверхности тела.

Задача теплопроводности становится нелинейной, если учитывать фазовые переходы в среде, такие, как плавление, испарение, конденсация, кристаллизация, происходящие при определенной температуре и сопровождающиеся выделением или поглощением теплоты.

В среде с фазовым переходом появляется поверхность ∑ раздела фаз, которую называют фронтом фазового перехода. Эта поверхность перемещается с конечной скоростью. Баланс тепловой энергии на фронте фазового перехода с температурой u* позволяет записать на движущейся поверхности ∑ фронта кроме условия

u1(P)=u2(P)=u*(1.3) другое граничное условие:

(1.4)

где k1, k2 и и1, u2 - коэффициенты теплопроводности и температуры двух соприкасающихся фаз соответственно; q* - удельная массовая теплота фазового перехода; V - мгновенная скорость перемещения фронта фазового перехода в направлении нормали поверхности∑;.

Так как скорость перемещения фронта V заранее не известна и должна быть найдена в процессе решения задачи теплопроводности, то граничное условие (1.4), называемое условием Стефана, делает задачу нелинейной.

Возможен и другой подход к моделированию процесса фазового перехода без явного выделения фронта фазового перехода при постановке задачи. Этот подход связан с переходом в класс обобщенных функций. Действительно, теплоту фазового перехода, выделяющуюся на фронте, можно учесть, считая внутреннюю энергию среды разрывной функцией температуры и вводя сосредоточенную теплоемкость среды.

При этом внутренняя энергия единицы объема среды е, как функция температуры, при u = u* скачком изменяется на величину теплоты фазового перехода, т.е.

(1.5)

Здесь = р(u) с(u) - теплоемкость единицы объема среды;

Q*=pq*;

импульсная функция Хевисайда, производная которой есть дельта-функция

.







Дата добавления: 2015-06-15; просмотров: 406. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия