Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Понятия о весах измерений. Общая арифметическая средина





Если измерения выполнялись не в одинаковых условиях, то результаты нельзя считать одинаково надежными. Такие измерения называют неравноточными. Например, один и тот же угол можно измерить точным и техническим теодолитом. Результаты данных измерений будут неравноточными.

 

Мерой сравнения результатов при неравноточных измерениях, т.е. мерой относительной ценности полученных неравноточных результатов является вес результата измерения.

 

Вес выражает как бы степень доверия, оказываемого данному результату по сравнению с другими результатами.

 

Чем надежнее результат, тем больше его вес. Вес определяется как величина обратная квадрату средней квадратической ошибки

 

Если, например, имеется два неравноточных значения длины линии 220,35 ± 0,1 м, 220,35 ± 0,2 м, то в качестве весов Р1 и Р2 могут быть приняты числа:

 

Веса можно умножать или делить, но на одно и тоже число. Разделив вычисленные в примере веса на 25, получим р1 = 4 и р2 = 1.

 

Так как р1 > р2, то первое измерение более точное.

 

Допустим имеется ряд равноточных результатов измерений, для которых рассчитаны средняя квадратическая ошибка m, среднее арифметическое ряда измерений и средняя квадратическая ошибка М. На основании определения веса, весом p отдельного измерения и весом арифметической средины P будут

Умножив веса на m 2, имеют Р = 1, Р = n, следовательно, вес арифметической средины больше веса отдельного измерения в n раз, n – число измерений, из которых вычислена данная арифметическая средина.

Иначе, весом результата измерения называется число равноточных измерений, из которых получен данный неравноточный результат измерения как среднее арифметическое.

 

Рассмотрим вывод формулы общей арифметической средины или весового среднего.

 

Пусть величина имеет ряд равноточных измерений:

 

Р1, Р2..... Рк, - не одинаковое число измерений. Так как измерения равноточные, то для получения вероятнейшего значения, необходимо образовать из всех результатов измерений среднее арифметическое

 

Разбив теперь рассматриваемый ряд равноточных измерений на k групп, образуем средние арифметические по группам L', L''..... L(к). Полученные арифметические средние можно рассматривать как новые результаты измерений той же величины, но уже неравноточные. Таким образом, вместо первоначального ряда равноточных измерений для некоторой величины мы получили новый ряд неравноточных измерений L', L''..... L(к), с весами Р1, Р2..... Рк. По данным неравноточным измерениям арифметическое среднее l p определяют по формуле

Полученное значение называется общей арифметической среди-ной или весовым средним.

 

Общая арифметическая средина из данных неравноточных измерений равна сумме произведений каждого измерения на его вес, разделенной на сумму весов. Она является вероятнейшим значением измеряемой величины.

Аналогично тому, как при равноточных измерениях, для оценки точности отдельного результата и арифметической средины, при оценке неравноточных измерений определяют среднюю квадратическую ошибку единицы веса

 

и среднюю квадратическую ошибку весового среднего

 

где – уклонения отдельных результатов измерений от общей арифметической средины. Для контроля правильности вычислений используется свойство

 

Для контроля правильности вычислений используется свойство

 







Дата добавления: 2015-06-15; просмотров: 528. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия