Железо (VI). Ферраты, получение и окислительные свойства. Применение железа и железосодержащих препаратов в медицине и фармации (в том числе в фармацевтическом анализе)
Ферраты - соли железной кислоты H2FeO4, которая в свободном виде не получена. Соединения железа (VI) проявляют сильные окислительные свойства. Ферраты и ферриты получаются из гидроксида трехвалентного (Fe (OH) 3) и гидроксида двухвалентного железа (Fe (OH) 2), соответственно. Феррат калия представляет собой черный порошок, растворяющийся в воде с образованием красной жидкости. Ферраты, в которых железо находится в степени окисления (VI), также проявляют сильные окислительные свойства. Ферраты можно получить окислением гидроксида железа (III) хлором, бромом и другими сильными окислителями, а также сплавлением ее с КОН и KNOS. Раствор феррата калия в воде красно-фиолетового цвета и устойчив только при очень низких температурах. При нагревании он разлагается с выделением кислорода, железо же переходит из 6 - в 3-валентное. Соли щелочноземельных металлов получаются взаимодействием феррата калия с солями соответствующего металла. Они более устойчивы; очень трудно растворяются в воде. Все ферраты являются сильными окислителями. Вообще ферраты - соединения непрочные, легко разлагаются. В то же время они сильные окислители, что в своей основе имеет высоко выраженные электроноакцепторные свойства частицы (квазииона) Fe, входящей в их состав. Растворы ферратов имеют интенсивную (красно-фиолетовую окраску, свойственную анионам FeO4, и осаждают при добавке соли Ва 4 феррат бария - характерную для железной кислоты / ее мало растворимую соль. Таким образом, в шестивалентном состояний железо утрачивает свойства металла и приобретает сходство с неметаллами, в частности с шестивалентной серой. Соединения железа (II) используются при различных заболеваниях, сопровождающихся анемией. Механизм терапевтического действия соединений железа (II) связан с образованием гемоглобиновой буферной системы. Гемоглобиновая буферная система в организме эффективно функционирует только в сочетании с гидрокарбонатной системой. Кобальт и никель. Химическая активность простых веществ в сравнении с железом. Соединения кобальта (II) и (III), никеля (II); КО и ОВ характеристики, способность к комплексообразованию (реакция Чугаева). Никель и кобальт как микроэлементы (кофермент-В12). Применение соединений кобальта и никеля в медицине и фармации.Общая характеристика элементов семейства платины. Кобальт и никель — элементы VIIIB (9, 10) группы. Электронные конфигурации валентных уровней: Co – 3d74s2, Ni – 3d84s2. Для кобальта и никеля характерны степениокисления +2 и +3, причём в водных растворах наиболее устойчивой является степеньокисления +2.Простые вещества Co и Ni в порошкообразном виде проявляют достаточно высокуюактивность по отношению к кислотам. В результате их взаимодействия с кислотами образуютсясоли со степенью окисления +2. Соли кобальта окрашены в розовый цвет, вследствиеобразования аквакомплекса [Co(H2O)6]2–, а водные растворы солей Ni окрашены в зелёный цвет из-за присутствия иона [Ni(H2O)6]2–. Наиболее устойчивыми их катионными комплексами являются аквакомплексы и аммиакаты, а также комплексы, где лигандами являются полидентантные органические молекулы, например, диметилглиоксимат. Образование нерастворимого комплексного диметилглиоксимата ярко-красного цвета является качественной реакцией на никель (II): NiCl2 + 2NH4OH + 2(CH3CNOH)2 = (CH3CNO)4H2N+ 2NH4Cl + 2H2O (реакция Чугаева) Кобальт относится к жизненно необходимым (эссенциальным) элементам. В организме содержится 1,2 мг кобальта в основном в составе витамина В12, центральным атомом которого является Со3+. Витамин В12 необходим для нормального кроветворения и созревания эритроцитов, синтеза амино-кислот, белков, РНК, ДНК. Никель. В организме человека никель содержится в количестве 5-13,5 мг, около 49% микроэлемента в мышечной ткани, кроме того в лёгких, коже, печени. В организме человека он входит в состав ряда ферментов. Установлено, что никель пролонгирует действие инсулина, что увеличивает его гипогликемическую активность. Никель оказывает влияние на ферментативные процессы, окисление аскорбиновой кислоты, ускоряет процесс перехода сульфгидрильных групп в дисульфидные. Он угнетает действие адреналина и снижает артериальное давление. Общая характеристика платиноидов. Структуры валентных электронных оболочек платиновых элементов отличаются значительным разнообразием вследствие возможности проскока и5-электронов на (п—1) -орбиталь. В силу малого различия энергий соответствующих орбиталей относительные устойчивости разных электронных конфигураций сравнимы. Легкость взаимных переходов электронов между различными уровнями обеспечивает разнообразие валентных состояний и степеней окисления. Поэтому нередко проскоки -электронов не связаны с достижением стабильной (-конфигурации, что характерно для элементов подгруппы меди. Нормальное заполнение валентных орбиталей (без проскоков электрона) характерно лишь для осмия и иридия, электронные конфигурации которых аналогичны таковым для железа и кобальта. Палладий — единственный элемент в периодической системе, который в нормальном состоянии не имеет электронов на з-оболочке. У платины стабильна -конфигурация, что также не наблюдается у других элементов периодической системы. Некоторые характеристики элементов и простых веществ семейства платиноидов приведены ниже.
63. Общая характеристика VА группы. Азот, фосфор, мышьяк в организме, их биологическая роль. Азот. Общая характеристика. Степени окисления азота. Соединения с отрицательными степенями окисления. Нитриды. Аммиак, КО и ОВ характеристики, реакции замещения. Амиды. Аммиакаты. Ион аммония и его соли, кислотные свойства, термическое разложение. Гидразин и гидроксиламин. Азотистоводородная кислота и азиды. Главная подгруппа V группы периодической системы Д.И. Менделеева включает пять элементов: типичные p-элементы азот N, фосфор P, а также сходные с ними элементы больших периодов мышьяк As, сурьму Sb, и висмутBi. Они имеют общее название пниктогены. Атомы этих элементов имеют на внешнем уровне по 5 электронов (конфигурация ns2 np3). В соединениях элементы проявляют степень окисления от -3 до +5. Наиболее характерны степени +3 и +5. Для висмута более характерна степень окисления +3. При переходе от N к Bi радиус атома закономерно возрастает. С увеличением размеров атомов уменьшается энергия ионизации. Это значит, что связь электронов наружного энергетического уровня с ядром у атомов ослабевает, что приводит к ослаблению неметаллических и усилению металлических свойств в ряду от азота к Bi. Азот и фосфор – типичные неметаллы, т.е. кислотообразователи. У мышьяка сильнее выражены неметаллические свойства. У сурьмы неметаллические и металлические свойства проявляются приближенно в одинаковой степени. Для висмута характерно преобладание металлических свойств. У атома азота три неспаренных электрона. Поэтому валентность азота равна трем. Из-за отсутствия у него d-подуровня на внешнем уровне его электроны разъединиться не могут. Однако в результате донорно-акцепторного взаимодействия азот становится четырехвалентным. У атомов фосфора и последующих элементов VА группы имеются свободные орбитали на d-подуровне и переходя в возбужденное состояние будут разъединятся 3s-электроны. В невозбужденном состоянии у всех элементов 5А группы валентность равна 3, а в возбужденном состоянии всех, кроме азота, равна пяти. Элементы этой группы образуют газообразные водородные соединения (гидриды) типа ЭН3 , в которых степень их окисления -3. NH3 аммиак, PH3 фосфин, AsH3 арсин, SbH3 стибин, BiH3 висмутин
AsH3, SbH3 газы с неприятным запахом, легко разлагаются. Чрезвычайно ядовиты. В кислородных соединениях для элементов VА группы наиболее характерны степени окисления +3 и +5. Для висмута более характерна степень окисления +3. Все элементы VА группы имеют оксиды типа Э2О5 и гидроксиды НЭО3 или Н3ЭО4, которые обладают кислотными свойствами. Кроме того для них характерны оксиды типа Э2О3 и соответствующие гидроксиды НЭО2или Н3ЭО3, у азота и фосфора они имеют кислотные свойства, у мышьяка и сурьмы – амфотерные, а у висмута проявляют основной характер. Мышьяк и сурьма имеют ряд аллотропных форм. Наиболее устойчивые металлические формы серого (As) и серебристо-белого (Sb) цвета. Это хрупкие вещества, легко превращаемые в порошок. Висмут – металл серебристо-белого цвета с едва заметным розовым оттенком. Соединения As, Sb, Bi ядовиты. Особо опасны соединения As3+ (AsH3- арсин). Азот, фосфор, мышьяк в организме, их биологическая роль. Азот по содержанию в организме человека (3,1 %) относится к жизненно важным биогенным макроэлементам. Основа белковых веществ и нуклеиновых кислот. Мы живем в азотной атмосфере (объемная доля азота в воздухе составляет 78%). Молекулярный азот участия в обмене веществ не принимает. Почти все животные должны получать хотя бы часть необходимого им азота в виде аминокислот, так как их организмы не способны синтезировать все аминокислоты из более простых предшественников. Растения могут использовать в качестве источника азота растворимые нитраты. Только немногие организмы способны усваивать элементный газообразный азот. Фосфор (0,95 %) является пятым из важнейших органогенов и играет исключительно важную роль в обмене веществ. В форме фосфата фосфор представляет собой необходимый компонент внутриклеточной АТФ. Он входит в состав белков (0,5—0,6%), нуклеиновых кислот, нуклеотидов и др. Фосфор является основой скелета животных и человека (кальций ортофосфат, Ca10(PO4)6 (OH)2 -гидроксилапатит), зубов (гидроксилапатит, Ca10(PO4)6F2 фторапатит). Фосфатная буферная система является одной из основных буферных систем крови. Значение фосфора состоит и в том, что сахара и жирные кислоты не могут быть использованы клетками в качестве источников энергии без предварительного фосфорилирования. Сут. потребность человека в фосфоре составляет 1,3 г. Мышьяк (1·10-6 %) микроэлемент, биогенная роль и формы содержания которого в организме неизвестны. Недостаток мышьяка приводит к понижению рождаемости и угнетению роста, а добавление в пищу арсенита натрия приводит к увеличению скорости роста у человека. Он концентрируется в печени, почках, селезенке, легких, костях, волосах. Больше всего в мозговой ткани и в мышцах. Мышьяк в течение нескольких лет не выводится полностью. Эта особенность используется в судебной экспертизе. Механизм воздействия мышьяка на клетку до конца неясен. Известно, что мышьяк соединяется с сульфгидрильными группами –SH. В малых дозах соединения обладают терапевтическим эффектом. Азот - бесцветный газ, не имеющий вкуса и запаха. Плохо растворим в воде и в органических растворителях. Энергия связи равна 941 кДж/моль. Азот не горит и не поддерживает горения других веществ, не реагирует ни с кислотами, ни со щелочами. При комнатной температуре азот реагирует с литием: N2+6Li = 2Li3N. При повышенных температурах он взаимодействует с другими активными металлами с образованием нитридов. Молекула азота имеет две неподеленные пары электронов и склонна, поэтому, к образованию комплексов. Основная масса азота сосредоточенна в атмосфере: (воздух: 78,09% N2; 20,95% 02; 0,932% Аr). Содержание в земной коре 4·10-2 %. Аммиак– бесцветный газ с резким запахом. Токсичен: раздражает слизистые оболочки, а острое отравление аммиаком вызывает поражение глаз и воспаление легких. При t = -33 оС - сжижается, при t = -78 оС - затвердевает. 1 объеме Н2О при 293 К растворяется 700 объемов аммиака (растворимость 31 моль/л). В конц. водном растворе w = 25 %. (аммиачная вода); 10 %-ный раствор аммиака (нашатырный спирт) Причина токсического действия аммиака на мозг до конца не выяснена. В крови при рН 7,4 аммиак почти полностью находится в виде ионов аммония. Ионы аммония, несмотря на то, что они в крови находятся в большом избытке, не могут проникать через клеточные мембраны, в то время как нейтральные молекулы NH3 легко проходят через эти мембраны и могут воздействовать на мозг. Аммиак sр 3 – гибридизация; 3δ- связи с тремя атомами водорода, которые занимают три (валентные электроны 2s 22р 3) вершины чуть искаженного тетраэдра. Четвертая вершина тетраэдра занята неподеленной электронной парой азота, что обеспечивает химическую активность, ненасыщенность и реакционную способность молекул аммиака.• NH3 + HNO3 = NH4NO3 • Из солей аммония в медицинской практике в качестве мочегонного средства применяют NH4CI. В крови в результате гидролиза NH4CI по катиону повышается кислотность: • NH4 + + 2Н2О → NH3 • Н2О + Н3О+ Кроме того, протоны образуются в результате превращения аммоний-иона в мочевину: • 2 NH4 + + СО2 + Н2О = CO(NH2)2 + 2Н3О+ NH3 + Н+ → NH4 + (Кb = 1,8·10-5 моль/л). Для нейтрализации избытка ионов Н3О+ почки мобилизуют и выделяют в мочу ионы натрия, с которыми одновременно выделяется соответствующее количество воды.Термическое разложение солей аммония (t oC): NH4Cl → NH3↑ + HCl ↑ (NH4)2CО3 → 2NH3↑ + CО2↑ + H2О (NH4)2 НРО4→ 2NH3↑ + H3РО4 NH4 Н2РО4→ NH3↑ + H3РО4 (NH4)2 SO4 → NH3↑ + NН4НSO4 NH4 NО2→ N2↑ +2 H2О (NH4)2 Сr2O7 → Сr2O3 + N2↑ +4 H2О 3 (NH4)2 SO4 → 4NH3↑ + 3SO2 + N2↑ +6 H2О 260оС NH4 NО3 → N2↑ + 2H2О 500оС 2NH4 NО3 → N2↑ + О2↑ + 4H2ОЭлектронодонорные свойства аммиака и его производных проявляются в их способности образовывать комплексные соединения с ионами металлов. Наиболее прочны комплексы с ионами переходных металлов, предоставляющих свои вакантные d-орбитали для неподеленных пар электронов азота. К числу таких соединений относятся, например, комплексы [Co(NH3)6 ] 3+, [Zn(NH3)4 ] 2+ При введении в избытке NH3 в растворы солей d – элементов образуются их амминокомплексы или аммиакаты: CuSО4+4NH3→[Cu(NH3)4 ]S04 голубой – в темно-синий Ni(N03)2+6NH3→[Ni(NH3)6 ](NО3)2 зеленый – в фиолет.В концентр. растворах за счет иона N-3 гидрат аммиака проявляет восстановительные свойства: 2(NH3 ∙ H2O) конц. + 2KMnO4 → N2↑ + 2MnO2↓ +4H2O +2KOH 2(NH3 ∙ H2O) конц. + 3 Br2 → N2↑ + 6 NH4Br +8H2O 2NH4Cl + 3CuO →3Cu + 3H2O↑ + 2HCl↑ + N2↑ (применение нашатыря для очистки от оксидов поверхности металлов при их пайке) 4NH3 + 3О2 =2N2 + 6Н2О ∆Н = - 1266 кДж/моль 2NH3+3Cl2 = N2+6HCl ∆Н = - 426 кДж/моль Аминокислоты — биоорганические вещества, играющие роль строительных блоков для образования белков - основы жизни. Их можно рассматривать как производные аммиака, в котором один из атомов водорода замещен остатком карбоновой кислоты. Гидразин (N2H4) - это бесцветная, легко испаряемая жидкость, ядовит, взрывается в присутствии кислорода. -2 2NH3 + NaOCl = N2H4 + NaCl + H2О N2H4 + O2 → N2 + 2H2O (гидразин как восстановитель)При восстановлении азотной кислоты атомарным водородом получается гидроксиламин: HNО3 + 6Н = NH2OH + 2Н2О. -1 Гидроксиламин NH2OH - бесцветные кристаллы (ТПЛ =330С), термически нестоек, выше 100°С взрывается. Водные растворы гидроксиламина более устойчивы, так как возникают межмолекулярные водородные связи. Гидроксиламин проявляет свойства восстановителя: NH2OH + I2 + 2КОН = N2 + 2KI + 4Н2О Азотистоводородная кислота, HN3 Бесцветная, летучая, взрывоопасная (взрывается при нагреве, ударе или трении) жидкость с резким запахом. Токсична. HN3 + H2O → N2 + NH2OH В водном растворе HN3 проявляет свойства слабой кислоты (рKа = 4,59). По силе она близка к уксусной кислоте. HN3 является окислителем. При взаимодействии с металлами образует соль металла, азот и аммиак: Cu + 3HNN2 → Cu(NN2)2 + N2 + H3N Соли этой кислоты называются азидами. HN3 получают действием ортофосфорной кислоты на азид натрия NaN3, который синтезируют из амида натрия: 2NaNH2 + N2O → NaN3 + NaOH + NH3 3NaN3 + H3PO4 → 3HN3 + Na3PO4СО
64. Фосфор. Общая характеристика. Аллотропические модификации фосфора, их химическая активность. Фосфиды. Фосфин. Сравнение с соответствующими соединениями азота. Соединения фосфора с положительными степенями окисления. Галиды, их гидролиз. Оксиды, взаимодействие с водой и спиртами. Фосфорноватистая (гипофосфористая) и фосфористая кислоты, строение молекул, КО и ОВ свойства. Дифосфорная (пирофосфорная) кислота. Изополи- и гетерополифосфорные кислоты. Метафосфорные кислоты, сравнение с азотной кислотой. Производные фосфорной кислоты в живых организмах.
Фосфор расположен в III периоде, в 5 группе главной подгруппе «А», под порядковым номером №15. Относительная атомная масса Ar(P) = 31. Р +15)2)8)5 1S22S22P63S23P3, фосфор: p– элемент, неметалл Валентные возможности фосфора шире, чем у атома азота, так как в атоме фосфора имеются свободные d-орбитали. Поэтому может произойти распаривание 3S2 – электронов и один из них может перейти на 3d– орбиталь. В этом случае на третьем энергетическом уровне фосфора окажется пять неспаренных электронов и фосфор сможет проявлять валентность V. Фосфиды, соединения фосфора с металлами, а также с неметаллами, более электроположительными, чем фосфор (В, Si, As и т.п.). Ф. непереходных металлов, а также металлов подгруппы меди, имеющие состав Me3P и Me2P5 для щелочных металлов, Me3P2 для щёлочноземельных, Me3P и MeP2 для металлов подгруппы меди (где Me – металл), – ионные, солеподобные соединения. Ф. щелочных и щёлочноземельных металлов легко разлагаются водой и разбавленными кислотами с выделением фосфина. Фосфи́н (фосфористый водород, фосфид водорода, гидрид фосфора, по номенклатуре IUPAC — фосфан РН3) — бесцветный, ядовитый газ (при нормальных условиях) со специфическим запахом гнилой рыбы. Аллотропные модификации фосфора. Белый фосфор Белый фосфор представляет собой белое вещество (из-за примесей может иметь желтоватый оттенок). По внешнему виду он очень похож на очищенный воск или парафин, легко режется ножом и деформируется от небольших усилий. Белый фосфор имеет молекулярное строение; формула P4. Отливаемый в инертной атмосфере в виде палочек (слитков), он сохраняется в отсутствие воздуха под слоем очищенной воды или в специальных инертных средах. Легкорастворим в органических растворителях. Растворимостью белого фосфора в сероуглероде пользуются для промышленной очистки его от примесей. Плотность белого фосфора из всех его модификаций наименьшая и составляет около 1823 кг/м. Плавится белый фосфор при 44,1 °C. В парообразном состоянии происходит диссоциация молекул фосфора. Химически белый фосфор чрезвычайно активен. Например, он медленно окисляется кислородом воздуха уже при комнатной температуре и светится (бледно-зелёное свечение). Явление такого рода свечения вследствие химических реакций окисления называется хемилюминесценцией (иногда ошибочно фосфоресценцией). Белый фосфор не только активен химически, но и весьма ядовит (вызывает поражение костей, костного мозга, некроз челюстей). Летальная доза белого фосфора для взрослого мужчины составляет 0,05--0,1 г. Жёлтый фосфор Неочищенный белый фосфор обычно называют «жёлтый фосфор». Сильно ядовитое (ПДК в атмосферном воздухе 0,0005 мг/м), огнеопасное кристаллическое вещество от светло-жёлтого до тёмно-бурого цвета. Удельный вес 1,83 г/см, плавится при +34 °C, кипит при +280 °C. В воде не растворяется, на воздухе легко окисляется и самовоспламеняется. Горит ослепительным ярко-зеленым пламенем с выделением густого белого дыма -- мелких частичек декаоксида тетрафосфора P4O10[5]. Несмотря на то, что в результате реакции между фосфором и водой (4Р + 6Н2О > РН3 + 3Н3РО2) выделяется ядовитый газ фосфин (РН3), для тушения фосфора используют воду в больших количествах (для снижения температуры очага возгорания и перевода фосфора в твердое состояние) или раствор сульфата меди (медного купороса), после гашения фосфор засыпают влажным песком. Для предохранения от самовозгорания жёлтый фосфор хранится и перевозится Красный фосфор Красный фосфор, также называемый фиолетовым фосфором, -- это более термодинамически стабильная модификация элементарного фосфора. Впервые он был получен при нагревании белого фосфора при 500 °С в атмосфере угарного газа (СО) в запаянной стеклянной ампуле. Красный фосфор имеет формулу Рn и представляет собой полимер со сложной структурой. В зависимости от способа получения и степени дробления красного фосфора, имеет оттенки от пурпурно-красного до фиолетового, а в литом состоянии -- тёмно-фиолетовый с медным оттенком металлический блеск. Химическая активность красного фосфора значительно ниже, чем у белого; ему присуща исключительно малая растворимость. Растворить красный фосфор возможно лишь в некоторых расплавленных металлах (свинец и висмут), чем иногда пользуются для получения крупных его кристаллов. Красный Фосфор на воздухе не самовоспламеняется, вплоть до температуры 240-250 °С, но самовоспламеняется при трении или ударе, у него полностью отсутствует явление хемолюминесценции. Нерастворим в воде, а также в бензоле, сероуглероде и других, растворим в трибромиде фосфора. При температуре возгонки красный фосфор превращается в пар, при охлаждении которого образуется в основном белый фосфор. Ядовитость его в тысячи раз меньше, чем у белого, поэтому он применяется гораздо шире, например, в производстве спичек (составом на основе красного фосфора покрыта тёрочная поверхность коробков). Плотность красного фосфора также выше, и достигает 2400 кг/м? в литом виде. При хранении на воздухе красный фосфор в присутствии влаги постепенно окисляется, образуя гигроскопичный оксид, поглощает воду и отсыревает («отмокает»), образуя вязкую фосфорную кислоту; поэтому его хранят в герметичной таре. При «отмокании» -- промывают водой от остатков фосфорных кислот, высушивают и используют по назначению. Чёрный фосфор Чёрный фосфор -- это наиболее стабильная термодинамически и химически наименее активная форма элементарного фосфора. Чёрный фосфор был получен из белого фосфора в виде чёрных блестящих кристаллов, имеющих высокую (2690 кг/м) плотность. Для проведения синтеза чёрного фосфора применяется 20 тысяч атмосфер и температуру около 200 °С. Начало быстрого перехода лежит в области 13 000 атмосфер и температуре около 230 °С. Чёрный фосфор представляет собой чёрное вещество с металлическим блеском, жирное на ощупь и весьма похожее на графит, и с полностью отсутствующей растворимостью в воде или органических растворителях. Поджечь чёрный фосфор можно, только предварительно сильно раскалив в атмосфере чистого кислорода до 400 °С. Чёрный фосфор проводит электрический ток и имеет свойства полупроводника. Температура плавления чёрного фосфора 1000 °С под давлением 18?105 Па. Металлический фосфор При 8,3?1010 Па чёрный фосфор переходит в новую, ещё более плотную и инертную металлическую фазу с плотностью 3,56 г/см, а при дальнейшем повышении давления до 1,25?1011 Па -- ещё более уплотняется и приобретает кубическую кристаллическую решётку, при этом его плотность возрастает до 3,83 г/см. Металлический фосфор очень хорошо проводит электрический ток. Соединения фосфора с положительными степенями окисления С галогенами (Г) фосфор образует соединения состава РГ3 и РГ5 (кроме РI5) – галиды. Галиды, их гидролиз PCl3 + 3H2O → H3PO3 + 3HClФосфор образует кислородсодержащие соединения, в которых имеет степени окисления +1, +3, +5. +1 В фосфорноватистой кислоте (фосфиновой) Н3РО2 только один атом водорода из трех связан с кислородом, поэтому способен к диссоциации (кислота одноосновная):Получают: 2Р4 (бел.) + 3Ва(ОН)2 + 6H2O → 2PH3 + 3Ва(Н2PO2)2 Ва(Н2PO2)2 + H2SO4 → BaSO4↓ + 2H3PO2 Соли - гипофосфиты. Хорошо растворимы в воде. Разлагаются щелочами: 2Na(PH2O2) + 3NaOH → Na2 (PHO3) + Na3PO4 + 3H2↑Р4О6 В упрощенном виде - Р2О3 Р4О6 - воскообразное вещество; tпл = 22,5 С. Получение: 4Р + 3О2 = Р4О6тФосфористая (фосфоновая) кислота Р4О6 + 6Н2О = 4Н3РО3Р2О3 + 4NaOH = 2Na2HPО3 + Н2О 4Н3РО3 = РН3 + ЗН3РО4 (t, C) HgCl2 + Н2 [НРО3 ] + Н2О = Н3РО4 +Hg↓ +2НСl Н3РО3 + Сl2 + Н2О = Н3РО4 + 2НСl Н2 [НРО3 ] фосфит натрия - Na2HPO3 и гидрофосфит натрия - NaH2PO3.Полифосфорные кислоты Дифосфорная (или пирофосфорная) Н4Р2О7 tпл = 61 С. Хорошо растворяется в воде. Более сильная кислота, чем Н3РО4.Метафосфорные кислоты НnРnО3n, где n – от 3 до 8, (НРОз)n Ядовиты. Производные фосфора содержатся в костях, мозге, крови, в мышечных и соединительных тканях организмов человека и животных. Особенно много ортофосфорной кислоты в составе нервных
65. Элементы подгруппы мышьяка. Общая характеристика. Водородные соединения мышьяка, сурьмы и висмута в сравнении с аммиаком и фосфином. Определение мышьяка по методу Марша. Соединения мышьяка, сурьмы и висмута с положительными степенями окисления. Галиды. Оксиды и гидроксиды Э (III) и Э (V), их КО и ОВ характеристики. Арсениты и арсенаты, их КО и ОВ свойства. Соли сурьмы (III) и висмута (III), их гидролиз. Сурьмяная кислота и ее соли. Висмутаты. Неустойчивость соединений висмута (V). Понятие о химических основах применения в медицине и в фармации аммиака, оксида азота (I) (закиси азота), нитрита и нитрата натрия, оксидов и солей мышьяка, сурьмы и висмута.
В природе As, Sb и Bi встречаются в виде сульфидов As2S3, Sb2S3, Bi2S3.Арсин AsНз, стибин SbH3 Сильные восстановители: AsH3 + 6AgNO3 + 3H2O → 6Ag↓ + As(OH)3 + 6HNO3 2AsH3 → 2As + 3Н2 разлагается при комн. t 2AsH3 + 3O2 → As2O3 + 3H2O (t=200 C) AsН3+3Сl2 → AsCl3 + 3HCl (t=-196 C) С бромом и йодом реагирует таким же образом, давая соответствующие галогениды. 2AsH3 + 3S → 3H2S + 2As Определение мышьяка по реакции Марша: +3 -3 As2О3 + 6Zn + 12HCl → 2AsH3 + 6ZnCl2 + 3H2О Газовою смесь пропускают через нагретую кварцевую трубку. При этом арсин разлагается с образованием блестящего черного налета мышьяка - «мышьякового зеркала»: 2AsH3 = 2As + 3Н2 Peaкция позволяет обнаружить следы мышьяка (7 -10 мг). Соединения мышьяка, сурьмы, висмута с положительными степенями окисления. Степень окисления +3: галиды ЭГ3, оксиды Э2О3, сульфиды Э2S3 и тиосоли. Галиды и изменение их свойств в группе (азот-висмут). -3 +1 NCl3 + 3H2O → NH3 + 3HClO +3 -1 PCl3 + 3H2O → H3PO3 + 3HCl AsCl3 +2H2O ↔ HAsO2 + 3HCl BiCl3 + H2O ↔ BiOCl + 2HClСульфиды, тиосоли As2S3 As2S5 Sb2S3, Sb2S5 Bi2S3 Bi2S5. Получают сплавлением серы с элементом: 2As + 3S → As2S3 2As + 5S → As2S5 Оба сульфида соединяются с ионами S-2 с образованием тиосолей. As2S5 + 3 Na2S → 2Na3AsS4 тиоарсенат натрия As2S3 + 3 Na2S → 2Na3AsS3 тиоарсенит натрия Bi2S3 +3 Na2S → 2Na3BiS3Мышьяк (III) оксид As2O3 — амфотерный оксид с преобладанием кислотных свойств. As2О3 (т) + ЗН2О (ж) → 2H3AsO3 (р) или As(OH)3 Мышьяк (III) гидроксид — амфотерен, но так же, как у As2O3, у него преобладают кислотные свойства. В свободном состоянии As(OH)3 не выделен, в водном растворе ведет себя как слабая кислота Н3AsО3, ортомышьяковистая (мышьяковистая). В водных растворах она находится в равновесии с метамышьяковистой кислотой НAsО2: H3AsО3 ↔ HAsО2 + Н2О Соли этих кислот соответственно называются ортоарсенитами и метаарсенитами. As2O3 + 6КОН → 2К3AsO3 + 3H2О ортоарсенит калия Оксид мышьяка (V): As2О5+ ЗН2О → 2H3AsO4 (ортомышьяковая кислота, слабее ортофосфорной). При растворении оксида мышьяка (V) в щелочах образуются арсенаты. As2О5 + 6КОН → 2К3AsO4 + 3H2ОСоединения мышьяка (V) и особенно мышьяка (III) очень токсичны. Механизм токсического действия объясняют способностью мышьяка блокировать группы -SH ферментов и других биологически активных соединений. Также, мышьяк может замещать иод, селен и фосфор. Нарушая биохимические процессы метаболизма в организме, As является антиметаболитом этих элементов. Смертельная доза для человека 0,1-0,3 г. Однако As2О3 применяют наружно (препарат белый мышьяк) при кожных заболеваниях.• В стоматологии As2О3 используют для омертвления мягких тканей зуба. • Препарат назначают в микродозах (0,001 г на прием) при малокровии, истощении и нервозности. • Организм может привыкнуть к As2О3, если его вводить постепенно, увеличивая дозу. В медицинской практике используют и раствор калия арсенита К3AsО3. (Фаулеров раствор мышьяка). Препарат применяют при тех же заболеваниях, что и As2O3.Сурьма (III) оксид Sb2О3 в воде нерастворим. Амфотерен. Sb2О3+ 3H2SO4 → Sb2 (SO4)3 + 3H2O Sb2О3 + 2КОН + 3Н2О → 2К[Sb(OH)4 ] При гидролизе соединений сурьмы (III) образуется неустойчивый катион Sb(OH)2 +, отщепляющий воду с образованием катиона SbO+ (стибил, антимонил): Sb3+ + 2H2O↔ Sb(OH)2 + + 2H+ Sb(OH)2 + → SbO+ + H2O Sb2О3 · nH2OВисмут (III) оксид Bi2О3 в воде нерастворим. Bi2О3 имеет основной характер. Соответствующий ему гидроксид Bi(ОН)3, получаемый косвенно, является слабым основанием. Соли висмута (III) в растворе сильно гидролизованы с образованием катиона висмутила BiО+: Bi3++ H2O↔ BiО+ + 2H+Bi2О3 входит в состав препарата ксероформ. Применяют наружно как вяжущее средство, подсушивающее и антисептическое средство. Препарат висмута нитрат основной состоит из смеси продуктов гидролиза Bi(NО3)3: Bi(OH)2NО3, BiONО3 и дегидратированного висмута гидроксида BiООН. Препарат применяют в качестве вяжущего и антибактериального средства при желудочно- кишечных заболеваниях. Арсенаты — соли мышьяковой кислоты H3AsO4. По химическим свойствам напоминают фосфаты. В воде растворимы только арсенаты щелочных металлов и аммония. Кристаллические бесцветные вещества. Известны ортоарсенаты (M3AsO4, часто существуют в виде кислых или основных солей, например, KH2AsO4), пироарсенаты(или диарсенаты, M4As2O7, известны только для натрия, магния и бария), триарсенаты (M5As3O10, известны для натрия и калия), метаарсенаты (MAsO3, с полимерныманионом). Структурные аналоги фосфатов. Различные арсенаты в большей или меньшей степени ядовиты. Используются в основном для производства антисептиков и инсектицидов, а также красок, предохраняющих от гниения. Арсенат кобальта, представляющий собой розовый порошок, также используется в производстве керамики.[1] Качественная реакция на арсенат-ион: , в результате которой образуется в виде характерный осадок арсената серебра(I) Арсениты (ортоарсениты) и метаарсениты — соли ортомышьяковистой и метамышьяковистой кислот H3AsO3, HAsO2. B воде растворимы только арсениты аммония ищелочных металлов. Очень ядовиты. Применяются как инсектициды. Сурьмяная кислота — неорганическое соединение оксида сурьмы и воды. Сурьмяная кислота существует в растворе в нескольких формах, например, гексагидроксосурьмяная H[Sb(OH)6]. При осаждении получают гель с переменным содержанием воды, при длительном высушивании — нерастворимую метасурьмяную кислоту HSbO3. Соли сурьмяной кислоты называются антимонатами (антимониатами) или оксистибатами.
В главную подгруппу VIII группы входят гелий He (лат.Helium), неон Ne (Neon), аргон Ar (Argon) и элементы подгруппы криптона – криптон Kr (Krypton), ксенон Xe (Xenon), радон Rn (Radon) – радиоактивный элемент. Каждый благородный газ завершает соответствующий период в периодической системе и имеет устойчивый, полностью завершённый внешний электронный уровень Общая характеристика благородных газов Восьмую а-группу периодической системы составляют благородные газы – гелий, неон, аргон, криптон, ксенон и радон. Эти элементы характеризуются очень низкой химической активностью, что и дало основание назвать их благородными, или инертными, газами. Они лишь с трудом образуют соединения с другими элементами или веществами; химические соединения гелия, неона, аргона не получены (как довольно-таки хорошо устойчивые соединения). Атомы благородных газов не соединены в молекулы, иначе говоря, их молекулы одноатомны. Благородные газы заканчивают собой каждый период системы элементов. Кроме гелия все они имеют в наружном электронном слое атома восемь электронов, образующих очень устойчивую систему. Так же устойчива и наружная оболочка гелия, состоящая из двух электронов. Поэтому атомы благородных газов характеризуются высокими значениями энергии ионизации и, как правило, отрицательными значениями энергии сродства к электрону. Соединения включения, или клатраты, известны только в твердом состоянии. Например, гидраты типа Э∙6H 2O образуются при действии сжатых благородных газов на кристаллизующуюся переохлажденную воду и существуют в кристаллической решетке льда при низких температурах и повышенных давлениях. В ряду Ar–Rn давление газа над кристаллогидратами при 0 °С падает с 98 атм до 0,4 атм, что обусловлено оптимизацией соотношения размеров атома и занимаемой им полости в структуре льда, а также различием в поляризуемости атомов, и указывает на большую прочность гидратов тяжелых газов. Клатратные соединения используют для разделения и хранения благородных газов. Соединения с валентными связями Э (II), Э (IV), Э (VI), Э (VIII) хорошо изучены на примере фторидов Kr и Xe, полученных по схеме Химическая связь в соединениях благородных газов не может быть описана с позиций МВС, поскольку в соответствии с этим методом в образовании связи должны участвовать d -орбитали. Однако возбуждение одного электрона с p - на d -орбиталь требует для ксенона около 100 кДж/атом, что не компенсируется энергией образования связи. Тетрафторид ксенона является сильным окислителем:
При нагревании и гидролизе XeF 4 диспропорционирует: Для шестивалентного Xe известны фторид XeF 6, оксид XeO 3, XeOF 4 – оксофторид, Xe(OH) 6 – гидроксид, а также комплексные ионы типа и XeO 3 хорошо растворим в воде и образует сильную кислоту Гексафторид очень активен, реагирует с кварцем: Производные Xe (VI) – сильные окислители, например: Для Xe (VIII) известны, кроме того, XeF 8, XeO 4, XeOF 6, В обычных условиях XeO 4 медленно разлагается: По мере увеличения степени окисления ксенона устойчивость бинарных и солеподобных соединений падает, а анионных комплексов – возрастает. Для криптона получены лишь KrF 2, KrF 4, неустойчивая криптоновая кислота KrO 3∙H 2O и ее соль BaKrO 4.
|