Распределение ответов для шкальных типов
Судя по таблице 6.3, априорное упорядочение вопросов совпало с реальным: самый «легкий» первый вопрос оказался и самым популярным (см. выше), тогда как на самый «тяжелый» вопрос шкалы положительно ответили лишь 30 опрошенных: нежелание высказывать свою точку зрения требует значительно большего количества «благопристойности», чем привычка стучать в дверь. Если бы использованный нами исходный порядок вопросов не совпал бы с их реальным ранжированием по числу позитивных ответов, то это само по себе не доказывало бы «нешкалируемости» данной совокупности пунктов: для того, чтобы получить столь же красивую «гутмановскую» картину распределения ответов, как в предыдущей таблице 6.2, было бы достаточно просто переставить столбцы таблицы так, чтобы первым оказался самый популярный вопрос с наибольшим числом положительных ответов и т. д. (Упорядоченную таким образом таблицу обычно называют шкалограммной матрицей, или шкалограммой.) Реальной проблемой в нашем примере, как и в большинстве случаев построения гутмановской шкалы, стало наличие так называемых нешкальных типов, т. е. таких паттернов ответа, которые попросту не укладываются в логику одномерной модели с монотонно возрастающей вероятностью ответа. Примером «нешкального» паттерна мог бы быть положительный ответ на третий вопрос при отрицательных ответах на первые два вопроса (— — +). То обстоятельство, что некий респондент, бесцеремонно входящий в чужую дверь без стука, боится открыто выразить свое мнение, может быть и случайной ошибкой, и результатом влияния какой-то посторонней переменной: возможно, отвечая на третий вопрос, этот человек думал не о хороших манерах, а о том, что высказывать свое мнение открыто в его привычной среде «невыгодно», недальновидно и т. п. Для того чтобы проверить шкальную гипотезу о том, что данная совокупность вопросов дает хорошее приближение к гутмановской шкале, нам следует трактовать «нешкальные» типы ответа как ошибки и оценить, насколько велико отклонение от идеальной модели. Пусть наш исследователь получил следующее распределение «нешкальных» типов (см. табл. 6.4). Разумно предположить, что «нешкальный» тип — — + можно отнести к шкальному типу — — — с одной ошибкой. Второй «нешкальный» паттерн ответа — + + можно рассматривать как отклонение от школьного типа + + + также с одной ошибкой (если бы мы отнесли этот «нешкальный» паттерн к типу — — —, то ошибок было бы две, а не одна). Существуют разные способы оценки приемлемости наблюдаемых отклонений от совершенной шкалы, содержащей лишь шкальные паттерны ответа. Здесь мы воспользуемся самым простым и грубым, рассчитав коэффициент воспроизводимости шкалы Rep (от англ. reproducibility) по следующей формуле: В нашем примере мы, основываясь на идеальной модели шкалы, можем воспроизвести (предсказать) по три ответа для 143 респондентов. Всего мы сделаем 429 предсказаний для отдельных ответов. Из них 8 ответов окажутся ошибочными (каждая ошибка будет отличаться от ожидаемого ответа только на 1 балл). Коэффициент воспроизводимости составит, таким образом, 0,98 (или 98%). Таблица 6.4
|