Участие в выборах и пол
Для приведенных в таблице 8.5 данных гипотеза (или модель) независимого поведения признаков предполагала бы, что в мужской и женской подгруппах пропорция участия и неучастия в выборах должна была бы сохраняться такой же, как и для всей выборки в целом (разумеется, в пределах выборочной ошибки). Например, для женщин число участвовавших в выборах, с учетом их доли в выборке (равной 400/1000) составило бы , т. е. 280 проголосовавших. Отсюда автоматически следует, что до избирательных участков не дошли бы 120 дам (т. е. 400 - 280). Ожидаемая частота голосования для мужчин составила бы Соответственно не проголосовали бы 180 мужчин. Для модели независимости признаков таблица сопряженности выглядела бы так: Таблица 8.6 Ожидаемые частоты для распределения участия в выборах по полу (рассчитанные в соответствии с моделью независимости признаков)
Сравнив таблицы 8.5 и 8.6, мы видим, что многое во второй из них «осталось как было». Маргиналы таблицы, т. е. общее количество мужчин и женщин, проголосовавших и не проголосовавших, остались, естественно, неизменными. Отличаются лишь теоретически ожидаемые частоты в клетках таблицы 8.6. «Хи-квадрат» как раз и оценивает суммарную величину отклонения наблюдаемых значений от ожидаемых («взвешенную» относительно ожидаемых частот). Для данных таблицы 8.5 величина «хи-квадрат» составит 136,128 (проверьте самостоятельно, используя данные табл. 8.6). Это явно много, но, чтобы оценить существенность, значимость полученной величины, следует воспользоваться специальными таблицами[197]. Отметим, что для того чтобы найти табличное значение, нужно определить так называемое число степеней свободы. В рассматриваемом примере оно равно единице, так как все теоретически ожидаемые частоты в таблице 8.5 — при заданных маргиналах — можно получить, вычислив лишь одну из них. Если бы размерность таблицы была бы 4x4 (по четыре номинальные градации для каждого признака), то оценка «хи-квадрат» производилась бы для (4 - 1)(4 - 1) = 9, т. е. 9 степеней свободы. Обсуждавшийся выше коэффициент j — это просто квадратный корень нормированного относительно численности выборки «хи-квадрата». Удобства коэффициента j очевидны: его легче вычислить, не прибегая к расчету ожидаемых частот, к тому же его величина меняется в пределах от 0 до 1. (Попробуйте рассчитать значение для данных таблицы 8.5.) Существуют и другие коэффициенты взаимосвязи (сопряженности) признаков, основанные на величине «хи-квадрат», например, V Крамера, Т Чупрова. Таблица 8.7
|