Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Стандартные отклонения





Рис. 18. Определение площади нормальной кривой для разных значений стан­дартного отклонения

 

Величина, равная квадратному корню из дисперсии, называется стандартным отклонением (s x), т.е.:

 

Совершенно очевидной интерпретацией стандартного отклонения является его способность оценивать «типичность» среднего: стандартное отклонение тем меньше, чем лучше среднее суммирует, «представляет» данную совокупность наблюдений.

Еще одно важное применение стандартного отклонения связано с тем, что оно, наряду со средним арифметическим, позволяет определить самые существен­ные характеристики нормального распределения. Графически нормальному рас­пределению частот наблюдений соответствует, как известно, симметричная колоколообразная кривая. Свойства нормального распределения прекрасно изу­чены, что позволяет делать важные выводы относительно самых разных распределений, не обязательно нормальных. В частности, известно, что 68% наблюдений (точнее, 68% общей площади) будет заключено в пределах ±1 стан­дартное отклонение от среднего значения. Если, скажем, среднее нормального распределения равно 200, а стандартное отклонение — 4, то можно заключить, что не менее 68% наблюдений лежит между значениями 196 и 204 (т. е. 200 ±4). Соответственно не менее 32% случаев будут лежать за этими пределами, в ле­вом и правом «хвостах» распределения. Из теории вероятности известно также, что в пределах ±3 стандартных отклонений окажется около 99,73% общего числа наблюдений (см. рис. 18).

Для любого унимодального симметричного распределения, даже если оно от­личается от нормального, не менее 56% наблюдений будут попадать в промежуток ±1 стандартное отклонение от среднего арифметического значе­ния, для ±3 стандартных отклонений внутри указанного интервала окажут­ся не менее 95% наблюдений.

Очевидно, что стандартное отклонение — это прекрасный показатель положе­ния любого конкретного значения относительно среднего, поэтому часто воз­никает необходимость выразить «сырые» оценки (баллы теста, величины дохо­да и т. п.) в единицах стандартного отклонения от среднего. Получаемые в ре­зультате оценки называют стандартными, или Z-оценками. Для любой совокупности из N наблюдений распределение со средним X и стандартным отклонением 5 можно преобразовать в распределение со средним, равным 0, и стандартным отклонением, равным 1. Преобразованные таким образом инди­видуальные значения будут непосредственно выражаться в отклонениях «сы­рых» значений от среднего, измеренных в единицах стандартного отклонения. Чтобы осуществить такое преобразование, нужно из каждого значения X вы­честь среднее и разделить полученную величину на стандартное отклонение, т. е. Z-оценки получают по простой формуле:

Использование Z-оценок не сводится к описанию положения некоторого значе­ния относительно среднего в масштабе единиц стандартного отклонения. Стан­дартные оценки позволяют перейти от множества «сырых» значений к произ­вольной шкале с удобными для расчетов характеристиками среднего и стандар­тного отклонения. Домножая Z на константу с, мы можем получить распределение со стандартным отклонением (s x ). Множество данных можно расположить на любой шкале с удобным средним (например, равным 100, как во многих тестах интеллекта) и стандартным отклонением. Другие применения Z-оценок связаны со сложными методами анализа данных, о которых мы будем говорить в дальнейшем.

Описанные процедуры анализа одномерного распределения относятся к деск­риптивной статистике. Если мы стремимся обобщить данные, полученные на отдельных выборках, чтобы описать свойства исходной генеральной совокуп­ности, необходимо, как уже говорилось, обратиться к методам индуктивной статистики, к теории статистического вывода. Переход от числовых характе­ристик выборки к числовым характеристикам генеральной совокупности на­зывается оцениванием. При одномерном анализе данных чаще всего решают задачу интервального оценивания.

Если переменная измерена на уровне не ниже интервального (доход, продол­жительность образования и т. п.), мы легко можем получить выборочную оцен­ку среднего. Но как узнать, насколько близка наша выборочная оценка, напри­мер, дохода, к истинному значению этого параметра, которое мы получили бы, располагая возможностью обследовать всю совокупность? Если наша выборка была случайной, на этот вопрос можно ответить. Чтобы перейти от выбороч­ной оценки (статистики) к характеристике генеральной совокупности (пара­метру), можно, в частности, определить числовой интервал, в который с задан­ной вероятностью «укладывается» интересующий нас параметр. Чтобы понять идею интервального оценивания, достаточно вспомнить о том, что оценки, получаемые для множества выборок из одной совокупности, будут также распре­делены нормально, т. е. большая их часть будет попадать в область, близкую к истинному среднему, и лишь немногие окажутся в «хвостах» распределения, отклоняясь от этого значения. Для любой отдельно взятой выборки шансы ока­заться близко к параметру совокупности значительно выше вероятности ока­заться в «хвосте». Чтобы оценить степень этой близости, используют очень важ­ную величину — стандартную ошибку средней. Стандартную ошибку обозна­чают как S М,

 

где sх — это стандартное отклонение,

а N — объем выборки.

Подсчитав эту величину для наших данных, мы всегда можем определить с за­данной вероятностью, в каких пределах будет лежать среднее совокупности. Совершенно аналогично приведенным выше рассуждениям для среднего от­клонения можно сказать, что 95% выборочных средних будет лежать в преде­лах ±2 стандартные ошибки среднего генеральной совокупности (т. е. для 95 выборок из 100 выборочное среднее попадет в указанный интервал). Следо­вательно, любая конкретная единичная выборка, использованная в данном ис­следовании, с 95%-й вероятностью даст оценку, лежащую в интервале ±2 стан­дартных ошибок среднего совокупности. Заданный таким образом интервал для выборочных оценок называется доверительным интервалом, а та вероятность, с которой мы «попадаем» в этот интервал (например, 95% или 99%), называет­ся доверительной вероятностью. Если, например, мы рассчитали, что для случайной выборки горожан средняя квартирная плата составляет 20000 рублей, а стандартная ошибка — 500 рублей, то можно с 95-процентной уверенностью утверждать, что для всех горожан средняя квартплата окажется в интервале 19000—21000 рублей. Задав интервал в 3 стандартные ошибки, мы сможем достичь уровня доверительной вероятности, равного 99,73% (см. рис. 18). Полезно помнить о том, что чем больше используемая выборка (чем больше N), тем меньше будет sm (см. формулу) и, следовательно, тем уже будет доверитель­ный интервал.

Задачу интервального оценивания можно решить и для тех переменных, уро­вень измерения которых ниже интервального. Для этого в статистике использу­ют свойства другого распределения — биноминального. Здесь мы не будем ана­лизировать эти свойства. Достаточно отметить, что биномиальным называют распределение исхода событий, которые могут случиться или не случиться, т.е. в общей форме могут быть классифицированы как положительные или отрица­тельные. При этом наступление одного события автоматически означает, что другое не случилось. Степень интенсивности события (признака) просто не принимается в расчет. Классический пример — бросание монеты, которая мо­жет выпасть «орлом» или «решкой». Чтобы использовать это распределение для интервального оценивания, нужно превратить анализируемую переменную в дихотомическую, имеющую две категории (если, конечно, она таковой не яв­лялась с самого начала). Примеры дихотомических переменных — пол, голосо­вание «за» или «против» и т. п. Для дихотомической переменной стандартную ошибку можно вычислить по формуле:

 

где Sbin стандартная ошибка для биномиального распределения, Р — процент наблюдений в первой категории, Q — процент наблюдений во второй катего­рии, N — объем выборки.

Если, например, нас интересует, насколько близок к истинному значению для генеральной совокупности тот процент ответов, который мы получили при оп­росе некоторой выборки, мы снова можем использовать интервальную оценку. Пусть, например, в выборке объемом 1000 человек 60% высказались против призыва студентов на воинскую службу, а 40% — за. Стандартная ошибка со­ставит:

 

Если добавить (и отнять) 2 стандартные ошибки[196] к полученной выборочной оценке, можно построить доверительный интервал, в который интересующая нас величина попадет с 95%-й вероятностью (т. е. вероятность ошибки не пре­высит 5%). С вероятностью 95% доля противников обязательного призыва сту­дентов составит 60±3,1%.

 







Дата добавления: 2015-06-15; просмотров: 728. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия