Виды анализа данных
Методы, применяемые социологами для анализа данных, многообразны. Выбор конкретного метода зависит, в первую очередь, от характера исследовательских гипотез, т. е. от того, на какие вопросы мы хотим получить ответ. Если целью является описание одной характеристики выборки в определенный момент времени, разумно ограничиться одномерным анализом, т. е. описанием распределения наблюдений («случаев») вдоль оси интересующего нас признака. Разнообразные техники многомерного анализа позволяют одновременно исследовать взаимоотношения двух и более переменных и в той или иной форме проверять гипотезы о причинных связях между ними. Различия между этими методами — точнее, классами методов — неабсолютны. В реальном исследовании каждое уточнение исходных гипотез или выдвижение новой гипотезы в ходе анализа результатов приводит к необходимости выбора новой техники анализа данных. Так, если изначальная модель взаимоотношения двух переменных (скажем, профессии и дохода) не позволяет выявить определенную закономерность в собранных данных, исследователь выбирает одну из статистических техник, позволяющих контролировать влияние какой-то третьей переменной, например пола, на интересующее его отношение. Помимо характера исследовательских гипотез на выбор методов статистического анализа влияет и природа полученных социологом данных. Мы уже говорили о том, что разные уровни измерения социологических переменных определяют возможности и ограничения анализа. Для того чтобы охарактеризовать распределение в выборке такого номинального признака, как «пол», мы не можем воспользоваться его среднеарифметическим значением и, следовательно, нам потребуются какие-то другие приемы компактного и точного представления полученной информации. Методы, используемые для анализа связи между двумя номинальными переменными, также будут отличаться от методов анализа связи между номинальной переменной и переменной, измеренной на интервальном уровне. Таким образом, выбор той или иной статистики будет зависеть и от целей анализа, и от уровня измерения исследуемых переменных. Существует два основных класса задач, решаемых с помощью статистических методов анализа. Задачей дескриптивной (описательной) статистики является описание распределения переменной-признака в конкретной выборке. Методы дескриптивной статистики позволяют также анализировать взаимосвязь между различными переменными. Другой класс задач, связанный с необходимостью вывести свойства большой совокупности, основываясь на имеющейся информации о свойствах выборки из этой совокупности, решается с помощью методов индуктивной статистики, или теории статистического вывода, основанной на вероятностном подходе к принятию решений. Воспользовавшись какой-то моделью для анализа полученных выборочных данных, социолог обычно также применяет некоторые методы статистического вывода, позволяющие определить, выполняются ли обнаруженные им при анализе данных отношения на уровне большой совокупности, из которой была извлечена выборка. В этой главе мы уделим основное внимание использованию дескриптивной статистики в анализе социологических данных. Нашей целью здесь будет скорее качественное, содержательное понимание сути этих методов, основанное лишь на самых элементарных математических представлениях и, в некоторых случаях, на интуитивном понимании «физического смысла» статистических моделей. Такое понимание может служить определенным фундаментом для более глубокого изучения прикладной статистики. Кроме того, оно совершенно необходимо для того, чтобы самостоятельно формулировать задачи анализа данных и ориентироваться в существующем разнообразии методов и техник, используемых другими исследователями при решении этих задач.
|