Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Требования к математической модели





 

Математическое моделирование многие считают скорее ис­кусством, чем стройной и законченной теорией. Здесь очень ве­лика роль опыта, интуиции и других интеллектуальных качеств человека. Поэтому невозможно написать достаточно формали­зованную инструкцию, определяющую, как должна строиться модель той или иной системы. Тем не менее, отсутствие точных правил не мешает опытным специалистам строить удачные мо­дели.

К настоящему времени уже накоплен значительный опыт, дающий основание сформулировать некоторые требования и под­ходы к построению моделей. При рассмотрении порознь каждый из них может показаться довольно очевидным. Но совокупность взятых вместе принципов и подходов далеко не тривиальна. Мно­гие ошибки и неудачи в практике моделирования являются пря­мым следствием нарушения этой методологии.

К математическим моделям предъявляются следующие основные требования:

1.Универсальности.

2.Точности.

3.Адекватности.

4.Экономичности.

Универсальность математической модели характеризует полноту отражения в ней свойств реального объекта. Математическая модель отражают не все, а лишь некоторые свойства реального объекта. Универсальность определяется в основном числом и составом учитываемых в модели внешних и выходных параметров.

Точность математической модели оценивается степенью совпадения значений выходных параметров реального объекта и значений тех же параметров, рассчитанных с помощью модели.

Точность модели различна в разных условиях функционирования объекта. Эти условия характеризуются внешними параметрами.

Пусть отражаемые в математической модели свойства объекта оцениваются вектором выходных параметров , - ый параметр, рассчитанный с помощью модели, а - истинное значение того же параметра. Тогда относительная погрешность математической модели по му параметру будет равна:

.

По этой формуле рассчитываются погрешности для каждого выходного параметра, в результате получается вектор погрешностей . В целом для математической модели погрешность оценивается следующим образом:

.

Экономичность математической модели характеризуется затратами вычислительных ресурсов на ее реализацию. Если работа с математической моделью осуществляется вручную, то ее экономичность определяется затратами личного времени проектировщика. Если модель используется при автоматизированном проектировании, то затратами машинного времени и памяти компьютера. Так как указанные величины определяются характеристиками конкретного компьютера, то использовать их для оценки экономичности математической модели не корректно.

Для оценки экономичности самой математической модели используют следующие величины.

1.Среднее количество операций, выполняемых при одном обращении к математической модели.

2.Размерность системы уравнений в математической модели.

3.Количество используемых в модели внутренних параметров и т.д.

Требования высокой степени универсальности, точности, широкой области адекватности математической модели, с одной стороны, и высокой ее экономичности, с другой стороны, противоречивы. Поэтому компромиссные решения определяются решаемой задачей.

К математическим моделям предъявляется и целый ряд других требований, среди которых следует выделить следующие:

1. Вычислимость, т.е. возможность ручного или с помощью ЭВМ исследования качественных и количественных закономерностей функционирования объекта (системы).

2. Модульность, т.е. соответствие конструкций модели структурным составляющим объекта (системы).

3. Алгоритмизируемость, т.е. возможность разработки соответствующего алгоритма и программы, реализующей математическую модель на ЭВМ.

4. Наглядность, т.е. удобное визуальное восприятие модели.

Противоречивость требований к модели обладать широкой областью адекватности, высокой степени универсальности и высокой экономичности обусловливает использование ряда моделей для объектов одного и того же типа.







Дата добавления: 2015-06-15; просмотров: 2167. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия