Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Корреляционный анализ. После выбора вида уравнения регрессии и нахождения его параметров выполняют второй этап КРА – корреляционный анализ





 

После выбора вида уравнения регрессии и нахождения его параметров выполняют второй этап КРА – корреляционный анализ, в рамках которого дают оценку тесноты и значимости связи.

В понятие «теснота связи» вкладывается оценка влияния факторного признака на результативный и установление адекватности теоретической зависимости между признаками по фактическим данным. Тесноту связи между признаками оценивают по средствам таких характеристик: коэффициент детерминации; коэффициент корреляции (корреляционное отношение) и др.

Коэффициент детерминации показывает, какая доля общей вариации результата, принятой за 1, формируется под влиянием данного фактора, а какая - за счет воздействия прочих причин. Он используется как при линейной, так и при нелинейной связи между признаками, и в случае парной регрессии рассчитывается по формуле: (9.6)

Коэффициент детерминации принимает значения от 0 до 1. Понятно, что чем ближе коэффициент к 1, тем теснее выявленная зависимость и тем большую роль играет данный фактор в формировании изменений результата. При R2=0 отсутствует линейная связь между признаками.

Коэффициент корреляции (корреляционное отношение) показывает, насколько значимым является влияние признака х на Y. Коэффициент корреляции рассчитывается по формуле: .

Он находится в диапазоне ; чем более близок R к единице, тем теснее корреляционная связь между признаками.

В случае линейной связи между Y и х величина линейного коэффициента корреляции определяется по формулам:

; (9.7)

. (9.8)

Можно использовать и другие формулы, но результат должен быть одинаковым для всех вариантов расчета.

Коэффициент корреляции принимает значения в интервале от -1 до + 1. Принято считать, что если | r |< 0,30, то связь слабая; при | r |= (0,3÷0,7) – средняя; при |r |> 0,70 – сильная, или тесная. Когда | r |= 1 – связь функциональная. Если же r принимает значение около 0, то это дает основание говорить об отсутствии линейной связи между Y и х.

Когда r >0, то связь между признаками прямая, при r <0 – обратная.

После установления тесноты связи дают оценку значимости связи между признаками. Под термином «значимость связи» понимают оценку отклонения выборочных переменных от своих значений в генеральной совокупности посредством статистических критериев. Оценку значимости связи осуществляют с использованием F-критерия Фишера и t-критерия Стьюдента.

Для парной регрессии (линейной и нелинейной) F-критерий Фишера рассчитывается по формуле:

, (9.9)

где - число степеней свободы числителя и знаменателя зависимости.

Теоретическое значение F сравнивают с табличным (критическим) значением Fтабл.. Если F> Fтабл, то выборочная совокупность и связь между признаками является значимой.

Для парной линейной регрессии при r=R расчетные критерии t-критерия Стьюдента вычисляются по формуле:

, где (n-2) – число степеней свободы. (9.10)

Критерий Стьюдента, рассчитанный по данной формуле, дает оценку значимости коэффициента корреляции R и существенности связи между признаками. Рассчитанное теоретическое значение t-критерия Стьюдента сравнивают с табличным tтабл, если t>tтабл, то линейный коэффициент корреляции является значимым при характеристики генеральной совокупности.







Дата добавления: 2015-06-16; просмотров: 398. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия