Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Энергия. Работа. Мощность

Стратегии интегрированного роста — это такие стратегии бизнеса, которые связаны с расширением фирмы путем добавления новых структур. Обычно фирма может прибегать к осуществлению таких стратегий, если она находится в сильном бизнесе, если интегрированный рост не противоречит ее долгосрочным целям.

Можно выделить следующие разновидности стратегии интегрированного роста:

горизонтальная интеграция (слияние с более сильной фирмой, поглощение фирмы конкурента, создание совместного предприятия);

вертикальная интеграция назад (обратная интеграция) направлена на рост фирмы за счет приобретения либо же усиления контроля над поставщиками. Фирма может либо создавать дочерние структуры, осуществляющие снабжение, либо же приобретать компании, уже осуществляющие снабжение. Реализация стратегии обратной вертикальной интеграции может дать фирме очень благоприятные результаты, связанные с тем, что уменьшится зависимость от колебания цен на комплектующие и запросов поставщиков.

вертикальная интеграция вперед выражается в росте фирмы за счет приобретения либо же усиления контроля над структурами, находящимися между фирмами и конечным потребителем, а именно системами распределения и продажи. Данный тип интеграции очень выгоден, когда посреднические услуги очень расширяются или же когда фирма не может найти посредников с качественным уровнем работы.

Энергия. Работа. Мощность.

Источником термина «энергия» считают др. греческое слово energeia, которое впервые появилось в ещё работах Аристотеля. Томас Юнг первым использовал понятие «энергия» в современном смысле слова.

Маркиза Эмили дю Шатле в книге «Уроки физики» (фр. «Institutions de Physique»), опубликованной в 1740 году, объединила идею Лейбница с практическими наблюдениями Виллема Гравезанда, чтобы показать: энергия движущегося объекта пропорциональна его массе и квадрату его скорости (не скорости самой по себе как полагал Исаак Ньютон).

В 1807 году Томас Юнг первым использовал термин «энергия» в современном смысле этого слова взамен понятия живая сила. Гюстав Гаспар Кориоли́свпервые использовал термин «кинетическая энергия» в 1829 году, а в 1853 году Уильям Ренкин впервые ввёл понятие «потенциальная энергия».

Джеймс Джоуль

 

Джеймс Прескотт Джоуль родился 24 декабря, 1818 года в английском городке Салфорде, расположенном вблизи Манчестера. Он был вторым из пяти детей в семье состоятельного владельца пивоваренного завода. В детстве Джеймс был слабым и стеснительным ребёнком, у которого были проблемы с позвоночником. Эти обстоятельства, ограничивающие его активность, стали причиной того, что он предпочёл науку физической деятельности. Несмотря на то, что позже проблема с позвоночником уже не так беспокоила его, это отразилось на всей его жизни.

До пятнадцати лет Джеймс обучался дома. Затем он стал работать на пивоваренном заводе, принадлежащем его семье. Тем не менее, он и его старший брат продолжали брать частные уроки в Манчестере.

С 1834 по 1837 год, известный английский химик Джон Далтон преподавал им химию, физику, научный метод и математику (как и Джеймс Джоуль, Далтон был христианином, верующим в Библию). Джеймс с благодарностью признавал, что Далтон сыграл основную роль в том, что он стал учёным.«Именно в результате его преподавания у меня появилось желание увеличить запас моих знаний с помощью оригинальных исследований» - говорил Джоуль.1

Когда их отец заболел, Джеймс и его брат начали заниматься делами на пивоваренном заводе, поэтому у Джеймса не было возможности посещать университет. Но, несмотря на это, его заветным желанием было продолжать изучать науку, и поэтому он создал у себя дома лабораторию, в которой и начал проводить свои эксперименты каждый день до и после работы. Джеймс рассматривал своё желание изучать науку как естественный результат своей христианской веры. Как он позже писал,«это очевидно, что познание законов природы означает не меньше, чем ознакомление с Божьим разумом, выраженным в этих законах»

В 1839 году Джоуль начал ряд экспериментов, в которых он исследовал механическую работу, электричество и теплоту. В 1840 году он послал свою работу "Об образовании Теплоты с помощью Вольтовского (Гальванического) Электричества" в Королевское Научное Общество в Лондоне — наверное, самое престижное общество британских учёных.

В своей работе он показал, что количество производимой теплоты за секунду в проводе с электрическим током равно квадрату тока (I) умноженного на сопротивление (R) провода. (Это выражено формулой, P=I²R.) Эта зависимость известна как закон Джоуля (Количество теплоты, выделяющееся в проводнике с током, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока). Работа Джоуля не вызвала большого энтузиазма в Королевском Научном Обществе, и было опубликовано лишь краткое изложение полученных им данных.

 

 

 

James Watt

День рождения: 19.01.1736 года

Место рождения: Гринок, Ренфрюшир, Великобритания

Дата смерти: 25.08.1819 года

Место смерти: Хэндсворт,Великобритания

Гражданство: Великобритания

Похожее: James, Watt, Джеймс, Уатт

 

Изобретатель паровой машины

Уатт работал над усовершенствованием паровой машины Ньюкомена (Newcomen), и его труды спровоцировали промышленную революцию не только в его родной Великобритании (UK), но и во всем мире. Уатт предложил использовать 'лошадиную силу' в качестве единицы мощности. В 1882-м Британская ассоциация инженеров назвала единицу мощности в его честь – Ватт.

13 июня 1773 г. – 10 мая 1829 г.

Томас Юнг ЮНГ (Young), Томас

13 июня 1773 г. – 10 мая 1829 г.

 

Несколько лет велись споры, является ли энергия субстанцией (теплород) или только физической величиной.

Развитие паровых двигателей требовало от инженеров разработать понятия и формулы, которые позволили бы им описать механический и термический коэффициенты полезного действия своих систем. Инженеры такие как Сади Кар но, физики такие как Джеймс Джоуль, математики такие как Эмиль Клапейрон и Герман Гельмгольц — все развивали идею, что способность совершать определённые действия, называемая работой, была как-то связана с энергией системы. В 1850-х годах, профессор натурфилософии из Глазго Уильям Томсон и инженер Уильям Ренкин начали работу по замене устаревшего языка механики с такими понятиями как «кинетическая и фактическая (actual) энергии». Уильям Томсон соединил знания об энергии в законы термодинамики, что способствовало стремительному развитию химии. Рудольф Клаузиус, Джозайя Гиббс и Вальтер Нернст объяснили многие химические процессы, используя законы термодинамики. Развитие термодинамики было продолжено Клаузиусом, который ввёл математически сформулировал понятие энтропии, и Джозефом Стефаном, который ввёл закон излучения абсолютно чёрного тела. В 1853 году Уильям Ренкин ввёл понятие «потенциальная энергия». В 1881 Уильям Томсон заявил перед слушателями:

Само слово «энергия», хотя и было впервые употреблено в современном смысле доктором Томасом Юнгом приблизительно в начале этого века, только сейчас входит в употребление практически после того, как теория, которая дала определение энергии, … развилась от просто формулы математической динамики до принципа, пронизывающего всю природу и направляющего исследователя в области науки.

 

Оригинальный текст (англ.)

The very name energy, though first used in its present sense by Dr Thomas Young about the beginning of this century, has only come into use practically after the doctrine which defines it had ... been raised from mere formula of mathematical dynamics to the position it now holds of a principle pervading all nature and guiding the investigator in the field of science.

Приблизительно в течение следующих тридцати лет эта новая наука имела несколько названий, например динамическая теория тепла (англ. dynamical theory of heat) или энергетика (англ. energetics). В 1920-х годах общепринятым стал термин «Термодинамика», наука о преобразовании энергии.

Особенности преобразования тепла и работы были показаны в первых двух законах термодинамики. Наука об энергии разделилась на множество различных областей, таких как биологическая термодинамика и термоэкономика (англ. thermoeconomics). Параллельно развивались связанные понятия, такие как энтропия, мера потери полезной энергии, мощность, поток энергии за единицу времени, и так далее. В последние два века использование слова энергия в ненаучном смысле широко распространилось в популярной литературе.

В 1918 было доказано, что закон сохранения энергии есть математическое следствие трансляционной симметрии времени, величины сопряжённой энергии. То есть энергия сохраняется, потому что законы физики не отличают разные моменты времени (см. Теорема Нётер, изотропия пространства).

 


 

 

Ричард Фейнман

Ричард Фейнман: "Какое тебе дело до того, что думают другие?"

 

В 1961 году выдающийся преподаватель физики и нобелевский лауреат, Ричард Фейнман в лекциях так выразился о концепции энергии:

Существует факт, или, если угодно, закон, управляющей всеми явлениями природы, всем, что было известно до сих пор. Исключений из этого закона не существует; насколько мы знаем, он абсолютно точен. Название его — сохранение энергии. Он утверждает, что существует определённая величина, называемая энергией, которая не меняется ни при каких превращениях, происходящих в природе. Само это утверждение весьма и весьма отвлечено. Это по существу математический принцип, утверждающий, что существует некоторая численная величина, которая не изменяется ни при каких обстоятельствах. Это отнюдь не описание механизма явления или чего-то конкретного, просто-напросто отмечается то странное обстоятельство, что можно подсчитать какое-то число и затем спокойно следить, как природа будет выкидывать любые свои трюки, а потом опять подсчитать это число — и оно останется прежним.

Оригинальный текст (англ.)

There is a fact, or if you wish, a law, governing natural phenomena that are known to date. There is no known exception to this law—it is exact so far we know. The law is called conservation of energy; it states that there is a certain quantity, which we call energy that does not change in manifold changes which nature undergoes. That is a most abstract idea, because it is a mathematical principle; it says that there is a numerical quantity, which does not change when something happens. It is not a description of a mechanism, or anything concrete; it is just a strange fact that we can calculate some number, and when we finish watching nature go through her tricks and calculate the number again, it is the same.

Литература и ссылки:
http://stock-news.org/smi1470/Энергия
http://www.physchem.chimfak.rsu.ru/Source/History/Persones/Young.html
http://ru.science.wikia.com/wiki/Ричард_Фейнман
http://www.origins.org.ua/author.php?author_id=98

Сивухин «общий курс физики»




<== предыдущая лекция | следующая лекция ==>
Стратегическая матрица Ансоффа | Лекция № 9

Дата добавления: 2015-03-11; просмотров: 93. Нарушение авторских прав

Studopedia.info - Студопедия - 2014-2017 год . (0.013 сек.) русская версия | украинская версия