Задача 1. Определите экономическую целесообразность инвестиций в следующий проект: сумма инвестиций –710, ожидаемые поступления по годам: 512
Определите экономическую целесообразность инвестиций в следующий проект: сумма инвестиций –710, ожидаемые поступления по годам: 512, 412, 312, 212 млн.руб. Коэффициент дисконтирования – 12%. Ожидаемый уровень инфляции – 18%. Решение: Рассчитаем номинальную процентную ставку исходя из взаимосвязи реальной, номинальной ставок и инфляции: r=(1+%)*(1+i)-1, где % - реальная ставка дохода; i - уровень инфляции; r - номинальная ставка дохода. r=(1+0,12)*(1+0,18)–1=0,322. Рассчитаем чистый приведенный эффект (NPV) по анализируемому проекту: Где Pk – будущая стоимость денег; r– необходимая денежная ставка дохода; k – продолжительность временного периода; IC – инвестируемая стоимость. NPV = 512/(1+0.322)1 + 412/(1+0.322)2 + 312/(1+0.322)3 +212/(1+0.322)4 – 710 = 117.95 (млн.руб.). Т.к. чистый приведенный эффект (NPV) > 0, то проект следует принять. Рассчитаем индекс рентабельности проектов (PI) анализируемому проекту: PI = (512/(1+0.322)1 + 412/(1+0.322)2 + 312/(1+0.322)3 +212/(1+0.322)4) / 710 = 1.17. Т.к. индекс рентабельности PI > 1, то проект следует принять. Рассчитаем внутреннюю норму доходности инвестиций (IRR) - норму прибыли (барьерная ставка, ставка дисконтирования), при которой чистая текущая стоимость инвестиции равна нулю, или это та ставка дисконта, при которой дисконтированные доходы от проекта равны инвестиционным затратам. Внутренняя норма доходности определяет максимально приемлемую ставку дисконта, при которой можно инвестировать средства без каких-либо потерь для собственника. IRR = r, при котором NPV = f(r) = 0. Где r1 – значение табулированного коэффициента дисконтирования, при котором f(r1) > 0; r2 – значение табулированного коэффициента дисконтирования, при котором f(r2) < 0. Пусть r1= 43% и r2=44%. Тогда: f(r1) = 512/(1+0.43)1 + 412/(1+0.43)2 + 312/(1+0.43)3 +212/(1+0.43)4 – 710 = 6.91 (млн.руб.). f(r2) = 512/(1+0.44)1 + 412/(1+0.44)2 + 312/(1+0.44)3 +212/(1+0.44)4 – 710 = -1.96 (млн.руб.). IRR = 0.43 + 6.91 / (6.91 + 1.96) * (0.44 + 0.43) = 0.44. Поскольку внутренняя норма доходности инвестиций IRR > r, то проект может быть принят. Рассчитаем простой срок окупаемости проекта (PP) анализируемому проекту: PP = min n, при ∑Pk > IC ∑Pk1-2 = 512 + 412 = 924, 924 > 710; PP = 2 года. Следовательно, анализируемый проект имеет срок окупаемости, равный 2 года. 5. Рассчитаем коэффициент эффективности инвестиций (ARR) по анализируемому проекту: Где PN – среднегодовая прибыль; IC – инвестиции; RV – остаточная или ликвидационная стоимость; - средняя величина инвестиций. ARR = (512+412+312+212-710)/4/(710/2) = 0.52. Коэффициент эффективности инвестиций (ARR) составляет 0,52, что свидетельствует об эффективности инвестиций в анализируемый проект с вероятностью 52%.
|