Элементы и виды сетевых моделей
Элементы и виды сетевых моделей. Сетевые модели состоят из трех следующих элементов: · Работа (или задача) · Событие (вехи) · Связь (зависимость) Работа (Activity) – это процесс, который необходимо выполнить для получения определенного (заданного) результата, как правило, позволяющего приступить к последующим действиям. Термины "задача" (Task) и "работа" могут быть идентичны, однако в некоторых случаях задачами принято называть выполнение действий, выходящих за рамки непосредственного производства, например "Экспертиза проектной документации" или "Переговоры с заказчиком". Иногда понятие "задача" используют для отображения работ самого низкого уровня иерархии. Термин «работа» используется в широком смысле слова, и может иметь следующие значения: · действительная работа, то есть трудовой процесс, требующий затрат времени и ресурсов; · ожидание – процесс, требующий времени, но не потребляющий ресурсы; · зависимость или «фиктивная работа» - работа, не требующая времени и ресурсов, но указывающая, что возможность начала одной работы непосредственно зависит от результатов другой. Событие (Node) – момент изменения состояния системы, в частности, момент начала или окончания любой работы по своей сути является событием, а каждая работа обязательно имеет начальное и конечное события. Работа – это действие или процесс, которые должны произойти для перехода от начального события к конечному. Некоторые события являются общими для нескольких работ, в этом случае свершение события является моментом времени, соответствующим завершению последней из работ, непосредственно предшествующих данному событию. Веха (Milestone) – разновидность события, характеризующая достижение значимых промежуточных результатов (отдельных этапов проекта). Связь (Link) – это логическая зависимость между сроками выполнения отдельных работ и наступления событий. Если для начала выполнения какой-либо работы необходимо завершение другой работы, говорят, что эти работы соединены связью (связаны). Связи по своему существу могут определяться технологией работ, либо их организацией. Соответственно различают технологические и организационные виды связей. Связи могут называться также зависимостями (Relationship), или фиктивными работами (Dummy Activity). Связям не требуются исполнители и прямые затраты времени, однако они могут характеризоваться продолжительностью растяжения (положительным, отрицательным или нулевым). При расчетах для сетевой модели определяются следующие характеристики ее элементов. Характеристики событий 1. Ранний срок свершения события tp( 0) = 0, tР(j) =тахi{tр(i) + t(ij)}, j=1--N характеризует самый ранний срок завершения всех путей, в него входящих. Этот показатель определяется «прямым ходом» по графу модели, начиная с начального события сети. 2. Поздний срок свершения события tп (N) = tр(N), tп (i) = minj {(tп(j)-t(ij)}, i=1--(N-1) характеризует самый поздний срок, после которого остается ровно столько времени, сколько требуется для завершения всех путей, следующих за этим событием. Этот показатель определяется «обратным ходом» по графу модели, начиная с завершающего события сети. 3. Резерв времени события R(T) = tп(i) - tр(i) показывает, на какой максимальный срок можно задержать наступление этого события, не вызывая при этом увеличения срока выполнения всего комплекса работ. Резервы времени для событий на критическом пути равны нулю, R (i) = 0.
Резервы времени работ:
Характеристики путей Продолжительность пути равна сумме продолжительностей составляющих ее работ. Резерв времени пути равен разности между длинами критического пути и рассматриваемого пути. Резерв времени пути показывает, насколько может увеличиться продолжительность работ, составляющих данный путь, без изменения продолжительности срока выполнения всех работ. В сетевой модели можно выделить так называемый критический путь. Критический путь Lкр состоит из работ (i,j), у которых полный резерв времени равен нулю Rп(i,j)=0, кроме этого, резерв времени R(i) всех событий i на критическом равен 0. Длина критического пути определяет величину наиболее длинного пути от начального до конечного события сети и равна.
|