Студопедия — Выполнил: студент заочной формы обучения гр. ИСиТ 14/3 Бирюков Я.Ю
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Выполнил: студент заочной формы обучения гр. ИСиТ 14/3 Бирюков Я.Ю

Большое народнохозяйственное значение имеют химические продукты, получающиеся при коксовании угля. Несмотря на быстрые темпы развития нефтехимической промышленности, коксохимия остается одним из основных поставщиков сырья для производства пластических масс, химических волокон, красителей и других синтетических материалов.

Это обусловливается крупными масштабами коксохимического производства и широким ассортиментом выпускаемой продукции. Доля коксохимических продуктов в сырьевой базе промышленности основного органического синтеза составляет около 50%, а таких важных продуктов, как бензол, достигает 80%, нафталин и крезолы—100%. Цветная металлургия является потребителем малозольного пекового кокса и связующего, получаемых из каменноугольной смолы. Коксы используются для приготовления анодной массы, применяемой при выплавке алюминия. На 1 т получаемого алюминия расходуется примерно 450 кг малозольного кокса и около 150 кг связующего. Другими словами, для получения 1 т алюминия надо израсходовать 1 т пека или скоксовать около 70 т угля.

Коксохимическая промышленность поставляет сельскому хозяйству ценное удобрение — сульфат аммония. Кроме того, на базе водорода коксового газа и азота кислородных станций металлургических комбинатов производятся самые дешевые азотистые удобрения. Водород является составной частью коксового газа, получаемого в значительном количестве при коксовании углей. Азот и кислород, составные части воздуха. Кислород нужен для интенсификации металлургических процессов. Азот кислородных станций может рационально использоваться в упомянутом комплексе, сочетающем черную металлургию и химическую промышленность.

Химические продукты коксования используются также для производства химических средств защиты растений и животных. Более 20 наименований продуктов и препаратов для нужд сельского хозяйства поставляет коксохимия. Ассортимент химических продуктов, выделяемых из каменноугольной смолы, сырого бензола и коксового газа насчитывает 134 наименования и более 240 сортов.

 

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

"Кольский филиал Петрозаводского государственного университета"

Факультет информатики и прикладной математики

Реферат на тему:

«Механика. Равномерное движение»

Выполнил: студент заочной формы обучения гр. ИСиТ 14/3 Бирюков Я.Ю.

Проверил: старший преподаватель Шейко Е.М.

 

 

Апатиты – 2015


 

Существует два вида движения: поступательное и вращательное. Простейшим видом механического движения является движение тела вдоль прямой линии с постоянной по модулю и направлению скоростью. Такое движение называется равномерным. При равномерном движении тело за любые равные промежутки времени проходит равные пути. Для кинематического описания равномерного прямолинейного движения координатную ось OX удобно расположить по линии движения. Положение тела при равномерном движении определяется заданием одной координаты x. Вектор перемещения и вектор скорости всегда направлены параллельно координатной оси OX. Поэтому перемещение и скорость при прямолинейном движении можно спроектировать на ось OX и рассматривать их проекции как алгебраические величины.

Если в некоторый момент времени t 1 тело находилось в точке с координатой x 1, а в более поздний момент t 2 – в точке с координатой x 2, то проекция перемещения Δ s на ось OX за время Δ t = t 2t 1 равна:

Δ s = x 2x 1.

Эта величина может быть и положительной и отрицательной в зависимости от направления, в котором двигалось тело. При равномерном движении вдоль прямой модуль перемещения совпадает с пройденным путем. Скоростью равномерного прямолинейного движения называют отношение:

Если υ > 0, то тело движется в сторону положительного направления оси OX; при υ < 0 тело движется в противоположном направлении.

Зависимость координаты x от времени t (закон движения) выражается при равномерном прямолинейном движении линейным математическим уравнением:

x (t) = x 0 + υ t.

В этом уравнении υ = const – скорость движения тела, x 0 – координата точки, в которой тело находилось в момент времени t = 0. График закона движения x (t) представляет собой прямую линию. Примеры таких графиков показаны на рис. 1.

 

 

Рисунок 1.(Графики равномерного прямолинейного движения)

Для закона движения, изображенного на графике I (рис. 1.), при t = 0 тело находилось в точке с координатой x 0 = –3. Между моментами времени t 1 = 4 с и t 2 = 6 с тело переместилось от точки x 1 = 3 м до точки x 2 = 6 м. Таким образом, за Δ t = t 2t 1 = 2 с тело переместилось на Δ s = x 2x 1 = 3 м. Следовательно, скорость тела составляет:

Величина скорости оказалась положительной. Это означает, что тело двигалось в положительном направлении оси OX. Обратим внимание, что на графике движения скорость тела может быть геометрически определена как отношение сторон BC и AC треугольника ABC (см. рис. 1.):

Чем больше угол α, который образует прямая с осью времени, т. е. чем больше наклон графика (крутизна), тем больше скорость тела. Иногда говорят, что скорость тела равна тангенсу угла α наклона прямой x (t). С точки зрения математики это утверждение не вполне корректно, так как стороны BC и AC треугольника ABC имеют разные размерности: сторона BC измеряется в метрах, а сторона AC – в секундах.

Аналогичным образом для движения, изображенного на рис. 1. прямой II, найдем x 0 = 4 м, υ = –1 м/с.

На рис. 2. закон движения x (t) тела изображен с помощью отрезков прямых линий. В математике такие графики называются кусочно-линейными. Такое движение тела вдоль прямой не является равномерным. На разных участках этого графика тело движется с различными скоростями, которые также можно определить по наклону соответствующего отрезка к оси времени. В точках излома графика тело мгновенно изменяет свою скорость. На графике (рис. 2.) это происходит в моменты времени t 1 = –3 с., t 2 = 4 с., t 3 = 7 с. и t 4 = 9 с. По графику движения нетрудно найти, что на интервале (t 2; t 1) тело двигалось со скоростью υ12 = 1 м/с, на интервале (t 3; t 2) – со скоростью υ23 = –4/3 м/с и на интервале (t 4; t 3) – со скоростью υ34 = 4 м/с.

Следует отметить, что при кусочно-линейном законе прямолинейного движения тела пройденный путь l не совпадает с перемещением s. Например, для закона движения, изображенного на рис. 2., перемещение тела на интервале времени от 0 с до 7 с равно нулю (s = 0). За это время тело прошло путь l = 8 м.

Рисунок 2. (Кусочно-линейный закон движения)


 

Движение тела по окружности является частным случаем криволинейного движения. Наряду с вектором перемещения удобно рассматривать угловое перемещение Δφ (или угол поворота), измеряемое в радианах (рис. 3.). Длина дуги связана с углом поворота соотношением:

Δ l = R Δφ.

При малых углах поворота Δ l ≈ Δ s.

 

       
 
   
 


Рисунок 3. (Линейное и угловое перемещения при движении тела по окружности)

 

Угловой скоростью ω тела в данной точке круговой траектории называют предел (при Δ t → 0) отношения малого углового перемещения Δφ к малому промежутку времениΔ t:

 

Угловая скорость измеряется в рад/с.

Связь между модулем линейной скорости υ и угловой скоростью ω:

υ = ω R.

При равномерном движении тела по окружности величины υ и ω остаются неизменными. В этом случае при движении изменяется только направление вектора

Равномерное движение тела по окружности является движением с ускорением. Ускорение

направлено по радиусу к центру окружности. Его называют нормальным или центростремительным ускорением. Модуль центростремительного ускорения связан с линейной υ и угловой ω скоростями соотношениями:

 

Движение тела по окружности можно описывать с помощью двух координат x и y (плоское движение). Скорость тела в каждый момент можно разложить на две составляющие υ x и υ y (рис. 4.).

При равномерном вращении тела величины x, y, υ x, υ y будут периодически изменяться во времени по гармоническому закону с периодом:

 

 

Рисунок 4. (Разложение вектора скорости по координатным осям)

Задача:

Первую половину пути автомобиль проехал со средней скоростью v1 = 60 км/ч, а вторую — со средней скоростью v2 = 40 км/ч. Определить среднюю скорость автомобиля на всем пути.

Решение:

проанализируем условие задачи: первую половину пути автомобиль проехал со скоростью 60 км/ч и затратил время, равное

t1 = S/2 .
v1

Вторую половину пути автомобиль проехал со скоростью 40 км/ч и затратил время, равное

t2 = S/2 .
v2

По определению, средняя скорость V при равномерном прямолинейном движении равна отношению всего пройденного пути ко всему затраченному времени.


Подставляя значения скорости в формулу средней скорости, получим:

V = 2 • 60 • 40 = 48 км/ч.
60 + 40

Средняя скорость равна 48 км/ч.




<== предыдущая лекция | следующая лекция ==>
ЗАГРУЗКА ПЕЧЕЙ УГОЛЬНОЙ ШИХТОЙ | По физике

Дата добавления: 2015-03-11; просмотров: 437. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия