Студопедия — Командный и машинный циклы микропроцессора
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Командный и машинный циклы микропроцессора






Микропроцессор i8086 работает в составе МПС, обмениваясь с памятью и ВУ словами длиной 2 байта, т. к. разрядность шины данных составляет 16 битов. В основе работы микропроцессора лежит командный цикл — действия по выбору из памяти и выполнению одной команды.

Любой командный цикл (КЦ) начинается с извлечения из памяти первого слова команды по адресу, хранящемуся в счетчике команд (PC). Команды i8086 могут иметь длину от 1 до 6 байтов, причем в первом слове содержится информация о длине команды. Таким образом, для извлечения из памяти одной команды может потребоваться одно или несколько обращений к ОЗУ.

(Страница150)

В зависимости от типа и формата команды, способов адресации и числа операндов командный цикл может включать в себя различное число обращений к памяти и ВУ, поскольку кроме чтения самой команды в КЦ может потребоваться чтение операндов и размещение результата.

Хотя обращения к ЗУ/ВУ располагаются в разных частях КЦ, выполняются они по единым правилам, соответствующим интерфейсу МПС, и реализованы на общем оборудовании управляющего автомата. Действия МПС по передаче в (из) МП одного слова команды (данных) называются машинным циклом. КЦ состоит из одного или нескольких машинных циклов (МЦ).

Машинный цикл включает выдачу процессором адреса памяти или внешнего устройства, по которому производится обращение, выдачу управляющих сигналов, характеризующих тип машинного цикла и направление передачи данных (М-IO, OP-IP), выдачу синхронизирующих (стробирующих) сигналов (STB, R, W) и собственно передачу данных. В i8086 реализована мультиплексированная шина адреса/данных. Это объясняется дефицитом внешних выводов кристалла и требует дополнительного такта для выдачи адреса и дополнительного управляющего сигнала STB, идентифицирующего наличие адреса на общей шине A/D.

По большому счету разнообразие МЦ сводится к двум разновидностям — чтению (данные или команды принимаются в процессор) и записи (данные выдаются из процессора). Временные диаграммы соответствующих МЦ приведены на рис. 6.2.

Рис, 6.2. Машинные циклы микропроцессора i8086: a — цикл ЧТЕНИЕ; б — цикл ЗАПИСЬ

Цикл начинается с формирования в такте Т1 сигнала М-IO, определяющего тип устройства — память или ВУ, с которым осуществляется обмен данными.

Длительность сигнала М-IO равна длительности машинного цикла, и он используется для селекции адреса устройств. В Т1 и в начале Т2 МП выдает адреса A[19: 16] и A[15: 0] и сигнал ВНЕ, который вместе с АО определяет выбор передачи либо всего слова, либо одного из его байтов. По спаду строба ALE адрес фиксируется во внешних регистрах-защелках. В такте Т2 происходит переключение шин: на выводы A[19: 16]/ST[6: 3] поступают сигналы состояния; а выводы A/D[15: 0] используются для приема/передачи данных.

Описанные выше машинные циклы являются синхронными; их длительность определяется только процессором. Однако такой обмен возможен лишь с устройствами, быстродействие которых не уступает процессорному. В противном случае микропроцессор должен реализовать асинхронный способ обмена, включающий анализ сигнала от устройства о готовности к обмену или о завершении процедуры обмена.

Роль такого сигнала в i8086 (и всех процессорах старших моделей семейства x86) играет вход RDY (от англ. ready — готовность), который всегда должен быть активным при синхронном обмене (с "быстрыми" устройствами). При обмене с "медленными" устройствами значение RDY должно оставаться неактивным (в разных процессорах активным для RDY может быть уровень логической 1 или логического 0) до тех пор, пока устройство, с которым связывается процессор, не завершит процедуру обмена, сообразуясь со своим быстродействием.

Время ожидания процессором готовности устройства может быть сколь угодно большим. Для этого в такте ТЗ процессор проверяет значение сигнала RDY, и если он неактивен, после такта ТЗ в машинный цикл вставляется произвольное количество тактов ожидания Tw, в каждом из которых анализируется значение RDY. При появлении активного значения RDY микропроцессор переходит к такту Т4 и завершает МЦ. Таким образом, удается согласовывать работу микропроцессора с устройствами различного быстродействия.







Дата добавления: 2015-04-16; просмотров: 4006. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия