Студопедия — Нейромедиаторы (нейротрансмиттеры): общие сведения
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Нейромедиаторы (нейротрансмиттеры): общие сведения






Передача нервных импульсов через синапсы происходит химическим путем - с помощью нейромедиаторов (нейротрансмиттеров). В настоящее время известны следующие вещества, выполняющие медиаторные функции: ацетилхолин, катехоламины (адреналин, норадреналин, дофамин), аминокислоты (гамма-аминомасляная кислота, глутаминовая кислота, глицин), гистамин, нейроактивные пептиды. К числу самых важных нейромедиаторов мозга относятся ацетилхолин, норадреналин, серотонин, дофамин, глутамат, ГАМК, эндорфины и энкефалины.

Нейротрансмиттеры являются первичными мессенджерами, но их высвобождение и определение в химических синапсах сильно отличается от эндокринных сигналов. В пресинаптической клетке, везикулы, содержащие нейротрансмиттер, высвобождают собственное содержимое локально в очень маленький объем синаптической щели. Высвобожденный трансмиттер затем диффундирует через щель и связывается с рецепторами на постсинаптической мембране. Диффузия является медленным процессом, но пересечение такой короткой дистанции, которая разделяет пре- и постсинаптические нейроны (0,1 мкм или меньше), происходит достаточно быстро и позволяет осуществлять быстрые коммуникации между нервами или между нервом и мышцей. Нейротрансмиттеры включают несколько семейств, (ацетилхолин, ГАМК, допамин) и (вазопрессин, брадикинин).

В таблице 1.1 приведена структура нескольких наиболее важных нейротрансмиттеров. В центральной нервной системе глутамат является главным возбуждающим трансмиттером, тогда как ГАМК и глицин ингибирующими. Самая выдающаяся роль ацетилхолина реализуется в нейромышечной передаче, где он является возбуждающим трансмиттером. опиоиды эндогенные

Медиатор образуется либо в теле нейрона (и попадает в синаптическую бляшку, пройдя через весь аксон), либо непосредственно в синаптической бляшке. В синаптической бляшке молекулы медиатора упаковываются в синаптические пузырьки, в которых они хранятся до момента высвобождения.

Известно несколько медиаторных веществ, для большинства из них описаны системы синтеза, хранения, высвобождения, взаимодействия с постсинаптическими рецепторами (из которых наиболее хорошо изучен ацетилхолиновый рецептор), инактивации, возврата продуктов их расщепления в пресинаптические окончания.

Имеются данные о том, что во всех пресинаптических окончаниях зрелого нейрона высвобождается один и тот же медиатор (принцип Дейла). Однако в процессе своего развития некоторые нейроны временно синтезируют и высвобождают более одного медиаторного вещества. Предполагают, что каждый нейрон можно отнести к категории либо возбуждающих, либо тормозных (концепция функциональной специфичности). Однако возбуждающий или тормозной характер действия медиатора определяется свойствами постсинаптической мембраны, а не самого медиатора. Таким образом, в нервной системе могло бы быть достаточно только одного медиатора, который при связывании с соответствующими постсинаптическими рецепторами вызывал бы тормозные или возбуждающие эффекты. Поэтому разнообразие медиаторных веществ заставляет предполагать, что они выполняют и другие функции, возможно, служат хемотаксическими факторами или трофическими факторами.

Нейроны, высвобождающие ацетилхолин, называются холинэргическими нейронами, а катехоламины - адренергическими нейронами.

Некоторые аминокислоты обнаружены в ЦНС в довольно высоких концентрациях, что и вызвало предположение об их медиаторной функции. Считается, что они используются в системах крупных афферентных путей и эфферентных путей (возбуждающих и тормозных), в отличие от ацетилхолина и катехоламинов, служащих медиаторами в периферической и вегетативной нервной системе.

Гамма-аминомасляная кислота синтезируется только в нервной системе из глутаминовой кислоты при посредстве глутаматдекарбоксилазы. Она встречается в ЦНС повсеместно, в самых разных концентрациях. При электофоретическом нанесении гамма-аминомасляная кислота оказывает, как правило, тормозное действие. Существуют данные о том, что эта кислота участвует в пресинаптическом торможении в качестве медиатора в аксо- аксонных синапсах. Некоторые судорожные яды (алкалоид бикукулин, пикротоксин) оказались специфическими антагонистами этой кислоты.

Широко распространенная аминокислота глицин также, видимо, служит медиатором в некоторых случаях постсинаптического торможения в спинном мозге. Специфическим антагонистом глицина является стрихнин.

Глутаминовая кислота при электрофоретическом нанесении обладает возбуждающим действием. Так как глутаминовая кислота обнаружена в ЦНС повсюду, весьма вероятно, что она не только является предшественником гамма-аминомасляной кислоты, но, кроме того, сама действует как медиатор.

Гистамин образуется путем декарбоксилирования аминокислоты гистидина. Довольно высокие концентрации гистамина обнаружены в гипофизе и в соседнем срединном возвышении гипоталамуса. В остальных отделах ЦНС уровень гистамина очень низок.

Молекулы нейроактивных пептидов представляют собой более или мене длинные цепи аминокислот. Предполагается, что вещество, которое служит медиатором в первичных афферентных волокнах в спинном мозге, является нейроактивным пептидом. Некоторые из нейроактивных пептидов представляют собой нейрогормоны, т.е. вещества, которые высвобождаются из нервных клеток, а затем переносятся кровотоком к их мишеням (не являющимся нейронами). К таким пептидам относятся либерины (рилизинг - гормоны), которые действуют на аденогипофиз, антидиуретический гормон (вазопрессин) и окситоцин, которые синтезируются в гипоталамусе и хранятся в нейрогипофизе.

Еще одна группа пептидов влияет на активность нейронов не через посредство синапсов, а присутствуя в качестве гормонов, например, эндорфины. Такие пептиды называются нейромодуляторами.

 

 

Ацетилхолин относится к числу самых важных нейромедиаторов мозга.

Самая выдающаяся роль ацетилхолина реализуется в нейромышечной передаче, где он является возбуждающим трансмиттером. Известно, что ацетилхолин может оказывать как возбуждающее, так и ингибирующее действие. Это зависит от природы ионного канала, который он регулирует при взаимодействии с соответствующим рецептором.

Нейротрансмиттер ацетилхолин высвобождается из везикул в пресинаптических нервных терминалях и связывается как с никотиновыми рецепторами, так и мускариновыми рецепторами на поверхности клетки. Эти два типа ацетихолиновых рецепторов значительно отличается как по структуре, так и по функциям.

Ацетилхолин - уксуснокислый эфир холина, является медиатором в нервно-мышечных соединениях, в пресинаптических окончаниях мотонейронов на клетках Реншоу, в симпатическом отделе вегетативной нервной системы - во всех ганглионарных синапсах, в синапсах мозгового вещества надпочечников и в постганглионарных синапсах потовых желез; в парасимпатическом отделе вегетативной нервной системы - также в синапсах всех ганглиев и в постганглионарных синапсах эффекторных органов. В ЦНС ацетилхолин обнаружен во фракциях многих отделов мозга, иногда в значительных количествах, однако центральных холинэргических синапсов обнаружить не удалось.

Ацетилхолин синтезируется в нервных окончаниях из холина, который поступает туда с помощью неизвестного пока транспортного механизма. Половина поступившего холина образуется в результате гидролиза ранее высвободившегося ацетилхолина, а остальная часть, по-видимому, поступает из плазмы крови. Фермент холин-ацетилтрансфераза образуется в соме нейрона и примерно за 10 дней транспортируется по аксону к пресинаптическим нервным окончаниям. Механизм поступления синтезированного ацетилхолина в синаптические пузырьки пока неизвестен.

По-видимому, лишь небольшая часть (15-20%) запаса ацетилхолина, который хранится в пузырьках, составляет фракцию немедленно доступного медиатора, готовую к высвобождению - спонтанно или под влиянием потенциала действия.

Депонированная фракция может мобилизоваться только после некоторой задержки. Это подтверждается, во-первых, тем, что вновь синтезированный ацетилхолин высвобождается примерно вдвое быстрее, чем ранее присутствовавший, во-вторых, при нефизиологически высоких частотах стимуляции количество ацетилхолина, высвобождаемое в ответ на один импульс, падает до такого уровня, при котором количество ацетилхолина, высвобождаемое в течение каждой минуты, остается постоянным. После блокады поглощения холина гемихолинием из нервных окончаний высвобождается не весь ацетилхолин. Следовательно, должна быть третья, стационарная фракция, которая, возможно, не заключена в синаптические пузырьки. Видимо, между этими тремя фракциями может происходить обмен. Гистологические коррелянты этих фракций еще не выяснены, но предполагают, что пузырьки, расположенные около синаптической щели, составляют фракцию немедленно доступного медиатора, тогда как остальные пузырьки соответствуют депонированной фракции или ее части.

На постсинаптической мембране ацетилхолин связывается со специфическими макромолекулами, которые называются рецепторами. Эти рецепторы, вероятно, представляют собой липопротеин с молекулярной массой около 300 000. Ацетилхолиновые рецепторы расположены только на наружной поверхности постсинаптической мембраны и отсутствуют в соседних постсинаптических областях. Плотность их составляет около 10 000 на 1 кв. мкм.

Ацетилхолин служит медиатором всех преганглионарных нейронов, постганглионарных парасимпатических нейронов, постганглионарных симпатических нейронов, иннервирующих мерокриновые потовые железы, и соматических нервов. Он образуется в нервных окончаниях из ацетил-КоA и холина под действием холинацетилтрансферазы. В свою очередь, холин активно захватывается пресинаптическими окончаниями из внеклеточной жидкости. В нервных окончаниях ацетилхолин хранится в синаптических пузырьках и высвобождается в ответ на поступление потенциала действия и вход двухвалентных ионов кальция.Ацетилхолин относится к числу самых важных нейромедиаторов мозга.

Если концевая пластинка подвергается действию ацетилхолина в течение нескольких сотен миллисекунд, то мембрана, деполяризованная вначале, постепенно реполяризуется, несмотря на постоянное присутствие ацетилхолина, то есть постсинаптические рецепторы инактивируются. Причины и механизм этого процесса пока не изучены.

Обычно действие ацетилхолина на постсинаптическую мембрану продолжается всего 1-2 мс, потому что часть ацетилхолина диффундирует из области концевой пластинки, а часть гидролизуется ферментом ацетилхолинэстеразой (т.е. расщепляется на неэффективные компоненты холин и уксусную кислоту). Ацетилхолинэстераза в больших количествах имеется в концевой пластинке (так называемая специфическая или истинная холинэстераза), однако холинэстеразы имеются также в эритроцитах (также специфические) и в плазме крови (неспецифические, т.е. расщепляют и другие эфиры холина). Поэтому ацетилхолин, который диффундирует из области концевой пластинки в окружающее межклеточное пространство и поступает в кровоток, тоже расщепляется на холин и уксусную кислоту. Большая часть холина из крови снова поступает в пресинаптические окончания.

Действие ацетилхолина на постсинаптическую мембрану постганглионарных нейронов может быть воспроизведено никотином, а на эффекторные органы - мускарином (токсин мухомора). В связи с этим возникла гипотеза о наличие двух типов макромолекулярных рецепторов ацетилхолина, и его действие на эти рецепторы называется никотиноподобным или мускариноподобным. Никотоноподобное действие блокируется четвертичными аммониевыми основаниями, а мускариноподобное - атропином.

Вещества, действующие на клетки эффекторных органов так же, как холинэргические постганглионарные парасимпатические нейроны, называются парасимпатомиметическими, а вещества, ослабляющие действие ацетилхолина - парасимпатолитическими.

Ацетилхолиновые рецепторы (холинорецепторы, холинергические рецепторы)

Ацетилхолиновый никотиновый рецептор является одновременно и ионным каналом, т.е. относится к рецепторам-каналоформером, тогда как ацетилхолиновый мускариновый рецептор относится к классу серпентиновых рецепторов, осуществляющих передачу сигнала через гетеротримерные G- белки.

Холинорецепторы вегетативных ганглиев и внутренних органов различаются.

На постганглионарных нейронах и клетках мозгового вещества надпочечников располагаются N-холинорецепторы (чувствительные к никотину), а на внутренних органах - М-холинорецепторы (чувствительные к алкалоиду мускарину). Первые блокируются ганглиоблокаторами, вторые - атропином.

М-холинорецепторы подразделяются на несколько подтипов:

- М1-холинорецепторы располагаются в ЦНС и, возможно, на нейронах парасимпатических ганглиев;

- М2-холинорецепторы - на гладких и сердечной мышцах и клетках железистого эпителия.

- М3-холинорецепторы располагаются на гладких мышцах и железах.

Селективным стимулятором М2-холинорецепторов служит бетанехол. Пример селективного блокатора М1-холинорецепторов - пирензепин. Этот препарат резко подавляет выработку HCl в желудке.

Стимуляция М2-холинорецепторов через Gi-белок приводит к ингибированию аденилатциклазы, а стимуляция М2-холинорецепторов через Gq-бeлок - к активации фосфолипазы С и образованию ИФ3 и ДАГ (рис. 70.5).

Стимуляция М3-холинорецепторов также приводит к активации фосфолипазы С. Блокатором этих рецепторов служит атропин.

Методами молекулярной биологии были выявлены и другие подтипы М-холинорецепторов, однако они пока недостаточно изучены.







Дата добавления: 2015-04-16; просмотров: 1546. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия