Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Статистические оценки параметров распределения





При обработке опытных данных вид функции (закона) распределения часто заранее известен, и требуется найти некоторые параметры, от которых он зависит. Например, если закон распределения нормальный, то необходимо оценить два параметра: математическое ожидание и среднее квадратическое отклонение. Если закон распределения показательный, то необходимо оценить значение . Об этом будет сказано ниже.

Обычно в распоряжении исследователя имеются лишь данные выборки .

Для оценки математического ожидания нормального распределения используют среднее арифметическое наблюдаемых значений.

Определение. Генеральной средней называют среднее арифметическое значений признака генеральной совокупности

,

где - частоты, . Ясно, что .

Определение. Выборочной средней называют среднее арифметическое значений признака выборочной совокупности

,

где - частоты, .

Замечание. Выборочная средняя может изменятся от выборки к выборке. Т.е. выборочную среднюю можно рассматривать как случайную величину, следовательно, можно говорить о распределениях (теоретическом и эмпирическом) выборочной средней и о числовых характеристиках этого распределения. В частности о математическом ожидании и дисперсии.

Ясно, что математическое ожидание есть , т.е. .

Определение. Генеральной дисперсией называют

.

- генеральное среднее квадратическое отклонение.

Пример: Задана генеральная совокупность

xi 2 4 5 6
ni 8 9 10 3

 

,

.

Определение: Выборочной дисперсией называют

.

- выборочное среднее квадратическое отклонение.

Пусть из генеральной совокупности извлечена повторная выборка объема n.

-значение признака

- частоты,

причем .

Требуется по данным выборки оценить неизвестную дисперсию .

Известно, что если в качестве оценки генеральной дисперсии принять выборочную дисперсию, то эта оценка будет давать заниженное значение генеральной дисперсии, т.к. , а хотелось бы, чтобы .

Поэтому выборочную дисперсию исправляют следующим образом

.

При этом

.

Эти оценки дисперсии называют смещенной и несмещенной соответственно.

Для оценки среднего квадратического отклонения генеральной совокупности используют “исправленное” выборочное среднее квадратическое отклонение:

.

Замечание. Сравнивая формулы и видим, что они отличаются лишь знаменателями.
Очевидно, что при увеличении n и отличаются все меньше. На практике используют исправленную дисперсию, если n<30.







Дата добавления: 2015-04-16; просмотров: 556. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия