Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Некоторые сведения о линейных дифференциальных уравнениях первого порядка





Определение: Линейное дифференциальное уравнение (ДУ) первого порядка вида

, (1)

называется неоднородным или неавтономным уравнением. Ему соответствует однородное или автономное д.у.

(2)

которое имеет общее решение

, (3)

Анализ всего семейства решений:

Пусть - начальное условие, тогда . Нулевое начальное условие влечет . Это состояние равновесия системы (нулевое решение ДУ(2)).

При ненулевых начальных условиях - экспоненциальный процесс ( меняется экспоненциально с изменением времени) затухающий при (убывающий до нуля) и возрастающий при .

Прямая называется фазовой прямой.

Неустойчивое состояние равновесия

 

Устойчивое состояние равновесия

 

 

Плоскость (x; ẋ) называется фазовой плоскостью

 

При λ<0 состояние равновесия x*=0 – неустойчиво.

 

При λ>0 состояние равновесия x* – устойчиво.

Стрелка указывает движение изображающей точки во времени.

Случай

(4)

Очевидно, - постоянное решение (4). Это состояние равновесия уравнения (4). Замена переменной в (4) приводит (4) к виду

(5)

но это есть уравнение (2), тогда общее решение уравнения (4) записывается в виде:

 

 

Фазовые прямые имеют вид:

 

 

Общий случай в (1)

 

ДУ (1) решаем методом вариации произвольной постоянной: решение ищем в виде

,

Уравнение для нахождения c(t): (6)

(7)

Тогда общее решение имеет вид:

(8)

Важный пример

Рассмотрим уравнение

Тогда выражение (7) приобретает вид

=

 

Тогда общее решение выглядит так:

 

(9)

Очевидно, что

есть вынужденное, стационарное периодическое решение уравнения (1). При и стационарное решение устанавливается всегда, т.е. и - установившееся асимптотически устойчивое периодическое решение уравнения (1).

Для уравнения (1) решения (8) изображены в неавтономном фазовом «пространстве» - на плоскости

 

 

- время переходного процесса.

Рассмотрим два примера конкретных динамических систем, приводящихся к рассмотренным уравнениям.

 

На рисунке представлена схема конденсатора емкости С, разряжающегося на сопротивление R. В соответствии с законами Кирхгофа, дифференциальное уравнение разряда конденсатора пишется в виде:

или

и, следовательно, описывается экспоненциальным убывающим процессом с временем уменьшения вдвое, равным

t = R C ln 2.

Это время t пропорционально емкости С и сопротивлению R. При начальном заряде q = q0

q (t) = q0 e-t/RC.

 

Следующий пример – торможение парашюта. Пусть по достижении скорости падения u0 парашют раскрылся и тормозит падение пропорционально его скорости. Согласно закону Ньютона,

.

Решение этого уравнения следующее:

.

Из него следует, что начальная скорость v 0(v 0 > 0) экспоненциально замедляется до постоянной скорости спуска, равной mg / h. График этого процесса изображен на рисунке ниже.

 

 
 

До сих пор рассматриваемые нами экспоненциальные процессы носили временной характер, т.е. они менялись экспоненциально с изменением времени.







Дата добавления: 2015-04-16; просмотров: 455. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия