Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задачи и методы расчета размерных цепей





Прямая (проектная) задача – задача, при которой заданы параметры замыкающего звена (номинальное значение, допустимые отклонения и т.д.) и требуется определить параметры составляющих звеньев.

Обратная (проверочная) задача – задача, в которой известны параметры составляющих звеньев (допуски, поля рассеивания, координаты их середин и т.д.) и требуется определить параметры замыкающего звена.

Метод расчета на максимум-минимум – метод расчета, учитывающий только предельные отклонения звеньев размерной цепи и самые неблагоприятные их сочетания. Метод обеспечивает полную взаимозаменяемость.

Вероятный метод расчета – метод расчета, учитывающий рассеяние размеров и вероятность различных сочетаний отклонений составляющих звеньев размерной цепи.

Метод обеспечивает неполную взаимозаменяемость.

Рассмотрим основные соотношения, используемые для расчета размерных цепей. При этом будем рассматривать линейные размерные цепи, это цепи звенья которых расположены на параллельных прямых. Соотношения для линейных размерных цепей после введения в них передаточных отношений описывают и угловые размерные цепи.

 

Метод максимума-минимума.

Основное уравнение размерной цепи запишем в виде:

(5)

Каждый заданный размер имеет три значения: номинальное, максимальное, линейное. Поэтому можно записать:

. (6)

. (7)

. (8)

Вычтем почленно (размеры одного наименования) (8) из (7).

, (9)

где Т – допуск; – допуск звена ТА, – допуск звена Аi.

Таким образом, допуск замыкающего звена равен арифметической сумме допусков составляющих звеньев.

Из (9) можно наметить основные пути повышения точности замыкающего звена:

а) уменьшение допусков составляющих звеньев;

б) сокращение числа звеньев в размерной цепи (принцип короткой цепи).

Для угловой размерной цепи выражение (9) имеет следующий вид:

. (10)

Выведем формулы для определения предельных отклонений замыкающего звена по предельным отклонениям составляющих звеньев.

Для определения верхнего предельного отклонения из (7) вычитаем (6).

, (11)

здесь – верхнее предельное отклонение, – нижнее предельное отклонение.

То есть верхнее предельное отклонение замыкающего звена равняется разности суммы верхних предельных отклонений увеличивающих звеньев и суммы нижних предельных отклонений уменьшающих звеньев.

Для определения нижнего предельного отклонения замыкающего звена из (8) вычитаем (6)

. (12)

То есть нижнее предельное отклонение замыкающего звена равняется разности суммы нижних предельных отклонений увеличивающих звеньев и суммы верхних предельных отклонений уменьшающих звеньев.

Предельные отклонения замыкающего звена можно рассчитать и по средним отклонениям составляющих звеньев .

Среднее отклонение составляющих звеньев определяется по выражению

. (13)

Справедливость этого выражения иллюстрируется на рис.4.

Сложим почленно выражения (11) и (12) и учитывая (13) получим для замыкающего звена:

. (14)

Из рис.4 ясно, что

(15)

(16)

 

Вероятностный метод

Номинальное значение замыкающего звена определяется так же как и в методе максимума-минимума, т.е.

.

Поле допуска замыкающего звена определяется по вероятностной формуле:

, (17)

здесь t – аргумент нормированной функции Лапласа ø(t).

В зависимости от вероятной доли брака (процент риска) принимает следующие значения.


 

 

 


                       
   
   
 
 
 
     
 
     
 
 
 
   

 

 


Рис.4. Схема определения среднего отклонения размера


 

Процент риска Р     4,5 1,0 0,27 0,1 0,01
t 1,0 1,65 2,0 2,57 3,0 3,29 3,89

 

Обычно на практике задают Р=0,27%. В этом случае количество деталей, выходящих за пределы допуска не превышает 3 штук на 1000 деталей. При Р=0,27% t=3.

– коэффициент относительного рассеивания размеров.

При рассеивании размеров по закону Гаусса ; равной вероятности . Симпсон .

При расчете по вероятностному методу возникает необходимость использование выражений (14-16).


 







Дата добавления: 2015-04-16; просмотров: 536. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия