Цитохромы
Обнаружены в 1886г. Мак-Мунном, исследованы в 1925г. Девидом Кейлином. Цитохромы – это сложные белки-гемопротеины, которые в качестве простетической группы содержат гем. Известно около 30 различных цитохромов. Их многообразие обусловлено: - различием боковых цепей в структуре гема; - различием в структуре полипептидных цепей; - различием в способе связи полипептидных цепей с гемом. В зависимости от способности поглощать свет в различной части спектра все цитохромы делятся на группы а, в, с. Внутри каждой группы отдельные виды с уникальными спектральными свойствами обозначают цифровыми индексами (в, в1, в2 и т.д.) Цитохромы имеют ряд особенностей: 1. Цитохромы в ЦПЭ располагаются в порядке возрастания окислительно-восстановительного потенциала (редокс-потенциала); 2. Железо в цитохромах способно изменять свою степень окисления, поэтому цитохромы в ЦПЭ транспортируют только электроны. В транспорте двух электронов принимают участие две молекулы каждого вида цитохромов, так как одна молекула цитохрома может переносить только один электрон. В ЦПЭ участвуют 5 типов цитохромов- а, а3, в, с, с1. За исключением цитохрома с, все цитохромы находятся во внутренней мембране митохондрий в виде сложных белковых комплексов. III комплекс – QН2-дегидрогеназа состоит из 2 типов цитохромов (в1 и в2), цитохрома с1 и FeS. Внутри комплекса электроны передаются от цитохромов в на FeS-центры, затем на цитохром с1. С цитохрома с1 электроны транспортируются на цитохром С.Это периферический водорастворимый мембранный белок с молекулярной массой 12500Д, имеющий одну полипептидную цепь из 100 аминокислотных остатков и молекулу гема, ковалентно связанную с полипептидом. От цитохрома С электроны переносятся на IV комплекс. IV комплекс – цитохромоксидаза входят два цитохрома типа аа3, каждый из которых имеет центр связывания с кислородом. Цитохромы а и а3 имеют в своей структуре гем А, отличающийся от гема цитохромов с и с1. Он содержит формильную группу вместо одной из метильных групп и углеводородную цепь вместо одной из винильных групп. Другая особенность комплекса аа3 – наличие в нем ионов меди, связанных с белковой частью в так называемых CuA- центрах. Перенос электронов комплексом а-а3 включает реакции:
Комплекс цитохромов а-а3 транспортирует электроны непосредственно на молекулярный кислород, активируя его: аа3 2ē ½ О2 О=
У активированного кислорода появляются две свободные валентности, к которым присоединяются 2 протона Н+ от первичных акцепторов водорода: НАД-зависимых дегидрогеназ, ФАД-зависимых дегидрогеназ; сукцинат-фумарат-дегидрогеназы (II комплекс) через убихинон (QН2).
![]()
2.6. Окислительное фосфорилирование АДФ. Механизм сопряжения окисления и фосфорилирования. Коэффициент окислительного фосфорилирования (Р/О). Так как электроны всегда стремятся переходить от электроотрицательных систем к электроположительным, их транспорт по ЦПЭ к кислороду сопровождается относительно большим снижением свободной энергии. В ЦПЭ можно выделить 3 участка, в которых перенос электронов сопровождается относительно большим снижением свободной энергии. Это количество свободной энергии необходимо для синтеза АТФ из АДФ и фосфата (фосфорилирование). Процесс переноса электронов по ЦПЭ и синтез АТФ энергетически сопряжены. Синтез АТФ из АДФ и Н3РО4 за счет энергии переноса электронов по ЦПЭ называют окислительным фосфорилированием. Механизм сопряжения окончательно не выяснен, наиболее обоснованной является хемиосмотическая теория Митчелла, предложенная в 1961г. Перенос электронов по ЦПЭ от НАДН к кислороду сопровождается выкачиванием протонов из матрикса митохондрий через внутреннюю мембрану в межмембранное пространство. Протоны, перенесенные из матрикса в межмембранное пространство, не могут вернуться обратно в матрикс, так как внутренняя мембрана не проницаема для протонов. Таким образом, создается протонный градиент, при котором концентрация протонов в межмембранном пространстве больше, а рН меньше, чем в матриксе. Кроме того, каждый протон несет положительный заряд, и вследствие этого появляется разность потенциалов по обе стороны мембраны: отрицательный заряд – на внутренней стороне, положительный заряд – на внешней. В совокупности электрический и концентрационный градиенты составляют электрохимический потенциал ΔμН+ - источник энергии для синтеза АТФ. Энергия электрохимического потенциала (ΔμН+) используется для синтеза АТФ, если протоны возвращаются в матрикс через ионные каналы АТФ-синтазы (V комплекс). Наиболее активный транспорт протонов в межмембранное пространство, необходимый для образования ΔμН+ происходит на участках ЦПЭ, соответствующих расположению комплексов I, III, IV. Эти участки называют пунктами сопряжения дыхания и фосфорилирования, где и происходит синтез АТФ. V комплекс – АТФ-синтаза. Это интегральный белок внутренней мембраны митохондрий. Он расположен в непосредственной близости к дыхательной цепи. АТФ-синтаза состоит из двух белковых комплексов. Гидрофобный комплекс F◦ погружен в мембрану. Он служит основанием, которое фиксирует АТФ-синтазу в мембране. Комплекс F0 состоит из нескольких субъединиц, образующих канал, по которому протоны переносятся в матрикс. Комплекс F1 выступает в матрикс. Он состоит из 9 субъединиц. Между α- и β- субъединицами располагаются три активных центра, в которых происходит синтез АТФ. Повышение концентрации протонов в межмембранном пространстве активирует АТФ-синтазу. Электрохимический потенциал ΔμН+ заставляет протоны двигаться по каналу АТФ-синтазы в матрикс. Параллельно под действием ΔμН+ происходят конформационные изменения в парах α- и β- субъединиц белка F1 , в результате чего из АДФ и Н3РО4 образуется АТФ. Электрохимический потенциал, генерируемый в 3 пунктах сопряжения в ЦПЭ, используется для синтеза одной молекулы в каждом пункте.
Отношение количества Н3РО4, использованной на фосфорилирование АДФ, к атому поглощенного кислорода, называют коэффициентом окислительного фосфорилирования и обозначают Р/О. Для субстратов, которые отдают протоны и электроны на НАД-зависимые дегидрогеназы, коэффициент фосфорилирования равен 3/1=3АТФ, так как протоны и электроны транспортируются через 3 пункта сопряжения (I, III, IV комплексы). Например, изоцитрат, малат, ПВК и др. Для субстратов, которые отдают протоны и электроны на ФАД-зависимые дегидрогеназы и сукцинат-фумарат-дегидрогеназу (II комплекс), коэффициент фосфорилирования равен 2/1=2АТФ, так как электроны поступают на III комплекс, минуя первый пункт сопряжения (I комплекс). Например, сукцинат, глицерол-3-фосфат и др.
|