Возникновение переходных процессов и законы коммутации
До сих пор мы изучали расчет установившихся режимов, т.е. таких, когда все токи и напряжения либо постоянные, либо периодически повторяющиеся функции времени, но в любой схеме могут происходить подключения и отключения ветвей (происходит коммутация). Обозначают коммутацию: . В линейных цепях коммутация считается идеальной, т.е.: 1) ключ представляет собой либо разрыв, либо провод; 2) длительность перехода из одного состояния в другое равна нулю. Момент времени сразу после коммутации обозначают либо , а момент времени непосредственно перед коммутацией соответственно обозначают , . После коммутации цепь стремится под действием источников схемы прийти к новому установившемуся режиму, но для этого ей требуется время. Процессы, происходящие в цепи после коммутации, называются переходными процессами. Почему этот переход не может произойти мгновенно? Дело в том, что в цепи имеются элементы L и C, в которых запасается определенная величина энергии WL=L 2/2 и WC=Cu2/2 соответственно. В новом установившемся режиме будет другой запас энергии, и, т.к. скорость изменения энергии есть подводимая к элементу мощность, получается, что требуется конечное время на изменение этого запаса энергии (т.к. источников бесконечной мощности в реальной цепи нет). Из выражения для WL и WC и того факта, что в цепях не развивается бесконечная мощность, вытекают два фундаментальных условия, без которых невозможно рассчитать ни один переходной процесс – это законы коммутации. Получим их: , т.к. P , L - конечное число, L - конечное число, то - скачка быть не может. Отсюда вытекает один из законов коммутации: ток в индуктивности не может измениться скачком, поэтому при коммутации: . Дифференцируя dWC/dt, приходим ко 2-ому закону коммутации: напряжение на ёмкости не может измениться скачком, поэтому при коммутации: . Т.к. = L L, , то можно использовать и такие функции: , . Про остальные величины, в том числе и про скорость изменения любых токов и напряжений при коммутации заранее ничего не известно и их приходится рассчитывать. Т.к. и форма изменения токов и напряжений неизвестна, приходится использовать самые общие выражения: , . Тогда уравнения, описывающие цепь после коммутации, оказываются дифференциальными. В линейной цепи – это линейные дифференциальные уравнения (ЛДУ). Существуют различные методы решения таких уравнений, и соответственно различают различные методы расчета переходных процессов. Классический метод Классический метод основан на решении ЛДУ методом вариации произвольных постоянных. Любая система ЛДУ может быть сведена к одному уравнению n –ого порядка. В цепях по схеме после коммутации порядок определяется так: n = n L + n C – nОК – nОС , где n L – число L; n C – число C; nОК – число особых контуров, т.е. таких, которые состоят только из емкостей и источников ЭДС; nОС – число особых сечений (в простейшем случае, это узлы схемы, к которым подключены только ветви с источником тока или с индуктивностями). Решение уравнения представляют в виде суммы частного решения неоднородного уравнения (ЛНДУ) и общего решения линейного однородного дифференциального уравнения (ЛОДУ). Частное решение определяется видом правой части уравнения. В цепях в правой части уравнения стоят источники энергии схемы после коммутации. Физический смысл частного решения уравнения в цепях – это новый установившийся режим, к которому будет стремиться схема после коммутации под действием источников. Поэтому частное решение ЛНДУ называют принужденной составляющей режима. Общее решение ЛОДУ физического смысла не имеет. В противоположность принужденной составляющей, его называют свободной составляющей переходного процесса. Свободная составляющая записывается в виде суммы слагаемых, число и вид которых определяются корнями характеристического уравнения. После записи решения необходимо рассчитать произвольные постоянные, вошедшие в выражение общего решения. Это можно сделать, если известны начальные условия. Начальные условия – это значения искомой функции времени и необходимого числа её производных по времени в начале переходного процесса, т.е. при t=0. Все начальные условия делят на две группы: - независимые начальные условия, это L(0) и uC(0), которые находятся по законам коммутации, с помощью вычисленных ранее L(0-) и uC(0-) в схеме до коммутации; - все остальные начальные условия – зависимые. Их приходится искать из цепи после коммутации в переходном режиме по законам Кирхгофа для мгновенных значений токов и напряжений при t=0 с помощью независимых начальных условий. Имея необходимое число начальных условий и рассматривая решение и его производные по времени в момент , получают систему линейных алгебраических уравнений (СЛАУ) из которой находят произвольные постоянные. В соответствии с изложенным, порядок расчета переходного процесса классическим методом может быть таким: 1) рассматривают установившийся режим схемы до коммутации и находят L(0-) и uC (0-); 2) рассматривают цепь после коммутации в новом установившемся режиме и находят принужденную составляющую переходного процесса; 3) тем или иным способом получают характеристическое уравнение и находят его корни в соответствии с которыми определяют вид свободной составляющей; 4) записывают решение в виде суммы принужденной и свободной составляющих.Если характеристическое уравнение n – ого порядка, то формируется система линейных алгебраических уравнений (СЛАУ) n - ого порядка, включающая (n-1) производную решения. Переписывают СЛАУ для ; 5) рассматривают цепь после коммутации в переходном режиме; рассчитывают необходимые начальные условия (ННУ); 6) подставляют ННУ в СЛАУ при и находят произвольные постоянные; 7) записывают полученное решение.
Вопрос 13.
|