Преобразование чисел из одной системы счисления в другую
Результатом является целое число. 1. Из десятичной системы счисления - в двоичную и шестнадцатеричную: а) исходное целое число делится на основание системы счисления, в которую переводится (2 или 16); получается частное и остаток; б) если полученное частное не делится на основание системы счисления так, чтобы образовалась целая часть, отличная от нуля, процесс умножения прекращается, переходят к шагу в), иначе над частным выполняют действия, описанные в шаге а); в) все полученные остатки и последнее частное преобразуются в соответствии с таблицей в цифры той системы счисления, в которую выполняется перевод; г) формируется результирующее число: его старший разряд – полученное последнее частное, каждый последующий младший разряд образуется из полученных остатков от деления, начиная с последнего и кончая первым. Таким образом, младший разряд полученного числа – первый остаток от деления, а старший – последнее частное. 2. Из двоичной и шестнадцатеричной систем счисления – в десятичную. В этом случае рассчитывается полное значение числа по формуле. Пример. Выполнить перевод числа 1316 в десятичную систему счисления. Имеем: . Пример. Выполнить перевод числа 100112 в десятичную систему счисления. Имеем: . 3. Из двоичной системы счисления в шестнадцатеричную: а) исходное число разбивается на тетрады (т.е. 4 цифры), начиная с младших разрядов; если количество цифр исходного двоичного числа не кратно 4, оно дополняется слева незначащими нулями до достижения кратности 4; б) каждая тетрада заменятся соответствующей шестнадцатеричной цифрой в соответствии с таблицей. 4. Из шестнадцатеричной системы счисления в двоичную: а) каждая цифра исходного числа заменяется тетрадой двоичных цифр в соответствии с таблицей. Если в таблице двоичное число имеет менее 4 цифр, оно дополняется слева незначащими нулями до тетрады; б) незначащие нули в результирующем числе отбрасываются.
|