Кальцитриол. Строение: Представляет собой производное витамина D и относится к стероидам
Строение: Представляет собой производное витамина D и относится к стероидам. Синтез: Образующийся в коже под действием ультрафиолета и поступающие с пищей холекальциферол (витамин D3) и эргокальциферол (витамин D2) гидроксилируются в печени по С25 и в почках по С1. В результате формируется 1,25-диоксикальциферол (кальцитриол). Регуляция синтеза и секреции Активируют: Гипокальциемия повышает гидроксилирование по С1 в почках. Уменьшают: Избыток кальцитриола подавляет гидроксилирование по С1 в почках. Механизм действия: Цитозольный. Мишени и эффекты: Эффект кальцитриола заключается в увеличении концентрации кальция и фосфора в крови: в кишечнике индуцирует синтез белков, отвечающих за всасывание кальция и фосфатов, в почках повышает реабсорбцию кальция и фосфатов, в костной ткани усиливает резорбцию кальция. Патология: Гипофункция Соответствует картине гиповитаминоза D. Роль 1.25-дигидроксикальци-ферола в обмене Ca и P.: Усиливает всасывание Ca и P из кишечника, Усиливает реабсорбцию Ca и P почками, Усиливает минерализацию молодой кости, Стимулирует остеокласты и выход Ca из старой кости. Витамин D (кальциферол, антирахитический) Источники: Имеется два источника поступления витамина D: печень, дрожжи, жирномолочные продукты (сливочное масло, сливки, сметана), желток яиц, образуется в коже при ультрафиолетовом облучении из 7-дегидрохолестерола в количестве 0,5-1,0 мкг/сут. Суточная потребность: Для детей – 12-25 мкг или 500-1000 МЕ, у взрослых потребность гораздо меньше.
После всасывания в кишечнике или после синтеза в коже витамин попадает в печень. Здесь он гидроксилируется по С25 и кальциферолтранспортным белком переносится к почкам, где еще раз гидроксилируется, уже по С1. Образуется 1,25-дигидроксихолекальциферол или кальцитриол. Реакция гидроксилирования в почках стимулируется паратгормоном, пролактином, соматотропным гормоном и подавляется высокими концентрациями фосфатов и кальция. Биохимические функции: 1. Увеличение концентрации кальция и фосфатов в плазме крови.Для этого кальцитриол:стимулирует всасывание ионов Ca2+ и фосфат-ионов в тонком кишечнике (главная функция),стимулирует реабсорбцию ионов Ca2+ и фосфат-ионов в проксимальных почечных канальцах. 2. В костной ткани роль витамина D двояка: стимулирует выход ионов Ca2+ из костной ткани, так как способствует дифференцировке моноцитов и макрофагов в остеокласты и снижению синтеза коллагена I типа остеобластами, повышает минерализацию костного матрикса, так как увеличивает производство лимонной кислоты, образующей здесь нерастворимые соли с кальцием. 3. Участие в реакциях иммунитета, в частности в стимуляции легочных макрофагов и в выработке ими азотсодержащих свободных радикалов, губительных, в том числе, для микобактерий туберкулеза. 4. Подавляет секрецию паратиреоидного гормона через повышение концентрации кальция в крови, но усиливает его эффект на реабсорбцию кальция в почках. Гиповитаминоз. Приобретенный гиповитаминоз.Причина. Часто встречается при пищевой недостаточности у детей, при недостаточной инсоляции у людей, не выходящих на улицу или при национальных особенностях одежды. Также причиной гиповитаминоза может быть снижение гидроксилирования кальциферола (заболевания печени и почек) и нарушение всасывания и переваривания липидов (целиакия, холестаз). Клиническая картина: У детей от 2 до 24 месяцев проявляется в виде рахита, при котором, несмотря на поступление с пищей, кальций не усваивается в кишечнике, а в почках теряется. Это ведет к снижению концентрации кальция в плазме крови, нарушению минерализации костной ткани и, как следствие, к остеомаляции (размягчение кости). Остеомаляция проявляется деформацией костей черепа (бугристость головы), грудной клетки (куриная грудь), искривление голени, рахитические четки на ребрах, увеличение живота из‑за гипотонии мышц, замедляется прорезывание зубов и зарастание родничков. У взрослых тоже наблюдается остеомаляция, т.е. остеоид продолжает синтезироваться, но не минерализуется. Развитие остеопороза частично также связывают с витамин D-‑недостаточностью. Наследственный гиповитаминоз Витамин D-зависимый наследственный рахит I типа, при котором имеется рецессивный дефект почечной α1-гидроксилазы. Проявляется задержкой развития, рахитическими особенностями скелета и т.д. Лечение – препараты кальцитриола или большие дозы витамина D. Витамин D-зависимый наследственный рахит II типа, при котором наблюдается дефект тканевых рецепторов кальцитриола. Клинически заболевание схоже с I типом, но дополнительно отмечаются аллопеция, milia, эпидермальные кисты, мышечная слабость. Лечение варьирует в зависимости от тяжести заболевания, помогают большие дозы кальциферола. Гипервитаминоз. Причина Избыточное потребление с препаратами (не менее 1,5 млн МЕ в сутки). Клиническая картина: Ранними признаками передозировки витамина D являются тошнота, головная боль, потеря аппетита и веса тела, полиурия, жажда и полидипсия. Могут быть запоры, гипертензия, мышечная ригидность.Хронический избыток витамина D приводит к гипервитаминозу, при котором отмечается:деминерализация костей, приводящая к их хрупкости и переломам.увеличение концентрации ионов кальция и фосфора в крови, приводящее к кальцификации сосудов, ткани легких и почек. Лекарственные формы Витамин D – рыбий жир, эргокальциферол, холекальциферол. 1,25-Диоксикальциферол (активная форма) – остеотриол, оксидевит, рокальтрол, форкал плюс. 58. Гормоны, производные жирных кислот. Синтез. Функции. По химической природе гормональные молекулы относят к трем группам соединений: 1)белки и пептиды; 2) производные аминокислот; 3) стероиды и производные жирных кислот. К эйкозаноидам (είκοσι, греч.-двадцать) относят окисленные производные эйкозановых к-т: эйкозотриеновой (С20:3), арахидоновой (С20:4), тимнодоновой (С20:5) ж-х к-т. Активность эйкозаноидов значительно разнится от числа двойных связей в молекуле, которое зависит от строения исходной ж-ой к-ы. Эйкозаноиды называют гормоноподобными вещ-ми, т.к. они могут оказывать только местное действие, сохраняясь в крови в течение неск-х сек. Обр-ся во всех органах и тканях практически всеми типами кл. Депонироваться эйкозаноиды не могут, разрушаются в течение неск-их сек, и поэтому кл должна синтезировать их постоянно из поступающих жирных кислот ω6- и ω3-ряда. Выделяют три основные группы: Простагландины (Pg) – синтезируются практически во всех клетках, кроме эритроцитов и лимфоцитов. Выделяют типы простагландинов A, B, C, D, E, F. Функции простагландинов сводятся к изменению тонуса гладких мышц бронхов, мочеполовой и сосудистой системы, желудочно-кишечного тракта, при этом направленность изменений различна в зависимости от типа простагландинов, типа клетки и условий. Они также влияют на температуру тела. Могут активировать аденилатциклазу Простациклины являются подвидом простагландинов (Pg I), вызывают дилатацию мелких сосудов, но еще обладают особой функцией – ингибируют агрегацию тромбоцитов. Их активность возрастает при увеличении числа двойных связей. Синтезируются в эндотелии сосудов миокарда, матки, слизистой желудка. Тромбоксаны (Tx) образуются в тромбоцитах, стимулируют их агрегацию и вызывают сужение сосудов. Их активность снижается при увеличении числа двойных связей. Увеличивают активность фосфоинозитидного обмена Лейкотриены (Lt) синтезируются в лейкоцитах, в клетках легких, селезенки, мозга, сердца. Выделяют 6 типов лейкотриенов A, B, C, D, E, F. В лейкоцитах они стимулируют подвижность, хемотаксис и миграцию клеток в очаг воспаления, в целом они активируют реакции воспаления, предотвращая его хронизацию. Также вызывают сокращение мускулатуры бронхов (в дозах в 100-1000 раз меньших, чем гистамин). повышают проницаемость мембран для ионов Са2+. Поскольку цАМФ и ионы Са2+ стимулируют синтез эйкозаноидов, замыкается положительная обратная связь в синтезе этих специфических регуляторов.
Биосинтез большинства эйкозаноидов начинается с отщепления арахидоновой к-ты от мембранного фосфолипида или диацил-глицерина в плазматической мембране. Синтетазный комплекс представляет собой полиферментную систему, функ-ую преимущественно на мембранах ЭПС. Обр-ся эйкозаноиды легко проникают ч/з плазматическую мембрану кл, а затем ч/з межклеточное простр-во переносятся на соседние кл или выходят в кровь и лимфу. Скорость синтеза эйкозаноидов увел-ся под влиянием гормонов и нейромедиаторов, акт-их аденилатциклазу или повышающих концентрацию ионов Са2+ в кл. Наиболее интенсивно обр-е простагландинов происходит в семенниках и яичниках. Во многих тканях кортизол тормозит осв-ие арахидоновой к-ты, что приводит к подавлению обр-я эйкозаноидов, и тем самым оказывает противовосп-е действие. Простагландин E1 является мощным пирогеном. Подавлением синтеза этого простагландина объясняют терапевтическое действие аспирина. Период полураспада эйкозаноидов составляет 1-20 с. Ферменты, инактивирующие их, имеются пр-ки во всех тканях, но наибольшее их кол-во сод-ся в легких. Лек-я рег-я синтеза: Глюкокортикоиды, опосредованно ч/з синтез специфич белков, блокируют синтез эйкозаноидов, за счет снижения связывания фосфолипидов фосфолипазой А2, что предотвращает высвобождение полиненасыщенной к-ты из фосфолипида. Нестероидные противовос-е средства (аспирин, индометацин, ибупрофен) необратимо ингиб-т циклооксигеназу и снижают выработку простагландинов и тромбоксанов. 60. Витамины Е. К и убихинон, их участие в обмене веществ. Витамины группы Е (токоферолы). Название «токоферол» витамина Е — от греческого «токос» — «рождение» и «ферро» — носить. Его обнаружили в масле из проросших зерен пшеницы. В настоящее время известно семейство токоферолов и токотриенолов, найденных в природных источниках. Все они - метальные производные исходного соединения токола, по строению очень близки и обозначаются буквами греческого алфавита. Наибольшую биологическую активность проявляет α-токоферол. Токоферол нерастворим в воде; как и витамины А и D, он растворим в жирах, устойчив к воздействию кислот, щелочей и высокой температуре. Обычное кипячение на него почти не влияет. А вот свет, кислород, ультрафиолетовые лучи или химические окислители действуют губительно.
Токоферол повышает биологическую активность витамина А, защищая от окисления ненасыщенную боковую цепь. Источники: для человека - растительные масла, салат, капуста, семена злаков, сливочное масло, яичный желток. Суточная потребность взрослого человека в витамине примерно 5 мг. Клинические проявления недостаточности у человека до конца не изучены. Известно положительное влияние витамина Е при лечении нарушения процесса оплодотворения, при повторяющихся непроизвольных абортах, некоторых форм мышечной слабости и дистрофии. Показано применение витамина Е для недоношенных детей и детей, находящихся на искусственном вскармливании, так как в коровьем молоке в 10 раз меньше витамина Е, чем в женском. Дефицит витамина Е проявляется развитием гемолитической анемии, возможно из-за разрушения мембран эритроцитов в результате ПОЛ.
В процессе переноса электронов с NADH-дегидрогеназы через FeS на убихинон он обратимо превращается в гидрохинон. Убихинон выполняет коллекторную функцию, присоединяя электроны от NADH-дегидрогеназы и других флавинзависимых дегидрогеназ, в частности, от сукцинат-дегидрогеназы. Убихинон участвует в реакциях типа: Е (FMNH2) + Q → Е (FMN) + QH2. Симптомы дефицита: 1) анемия2) изменения в скел мускулатуре 3) сердечная недост 4) изменения в костном мозге Симптомы передозировки: возможна только при избыточном введении и обычно проявляется тошнотой, нарушениями стула и болями в животе. Источники: Растительные - Зародыши пшеницы, растительные масла, орехи, капуста. Животные - Печень, сердце, почки, говядина, свинина, рыба, яйца, курятина. Синтезируется микрофлорой кишечника.
Структурные формулы рабочей части коферментов FAD и FMN. В ходе реакции FAD и FMN присоединяют 2 электрона и, в отличие от NAD+, оба теряемых субстратом протона. 63. Витамины С и Р, строение, роль. Цинга.
Витамин Р (биофлавоноиды; рутин, цитрин; витамин проницаемости) В настоящее время известно, что понятие "витамин Р" объединяет семейство биофлавоноидов (катехины, флавононы, флавоны). Это очень разнообразная группа растительных полифенольных соединений, влияющих на проницаемость сосудов сходным образом с витамином С. Под термином «витамин Р», повышающим резистентность капилляров (от лат. permeability – проницаемость), объединяется группа веществ со сходной биологической активностью: катехины, халконы, дигидрохалконы, флавины, флавононы, изофлавоны, флавонолы и др. Все они обладают Р-витаминной активностью, и в основе их структуры лежит дифенилпропановый углеродный «скелет» хромона или флавона. Этим объясняется их общее название «биофлавоноиды». Витамин Р усваивается лучше в присутствии аскорбиновой кислоты, а высокая температура легко её разрушает.
Суточная потребность для человека Составляет, в зависимости от образа жизни, 35-50 мг в день. Биологическая роль флавоноидов заключается в стабилизации межклеточного матрикса соединительной ткани и уменьшении проницаемости капилляров. Многие представители группы витамина Р обладают гипотензивным действием.
-Рутин повышает активность аскорбиновой кислоты. Защищая от окисления, помогает лучшему её усвоению, он по праву считается "главный партнёр" аскорбинки. Укрепляя стенки кровеносных сосудов и уменьшая их ломкость, он тем самым снижает риск внутренних кровоизлияний, предупреждает образование атеросклеротических бляшек. -Нормализует повышенное артериальное давление, способствуя расширению сосудов. Способствует формированию соединительной ткани, а следовательно быстрому заживлению ран и ожогов. Способствует профилактике варикозного расширения вен. -Положительно влияет на работу эндокринной системы. Используется для профилактики и дополнительного средства в лечении артрита ― тяжелого заболевания суставов и подагры. -Повышает иммунитет, обладает противовирусной активностью. Заболевания: Клиническое проявление гипоавитаминоза витамина Р характеризуется повышенной кровоточивостью дёсен и точечными подкожными кровоизлияниями, общей слабостью, быстрой утомляемостью и болями в конечностях. Гипервитаминоз: Флавоноиды не токсичны и случаев передозировки не замечено, поступившие с пищей излишки легко выводятся из организма. Причины: Недостаток биофлавоноидов может возникать на фоне длительного приема антибиотиков (или в больших дозах) и других сильнодействующих препаратов, при любом неблагоприятном воздействии на организм, например, травма или хирургическое вмешательство.
|