Спектр прямоугольного импульса
Наиболее часто в вычислительной технике для передачи данных используется прямоугольный импульс, внешний вид и основные параметры которого приведены на рис. 6. Рис. 6. Прямоугольный импульс
Аналитически во временном представлении импульс описывается функцией
Для определения спектра этого импульса подставим его аналитическое описание в формулу спектра непериодического сигнала: Воспользовавшись формулой Эйлера получим . Иногда в радиотехнической литературе это выражение записывают так . Модуль этой функции, т.е. амплитудный спектр определяется выражением . При , , при , . Спектр прямоугольного импульса приведен на рис. 7.
Рис. 7. Спектр прямоугольного импульса Спектр прямоугольного импульса сплошной и простирается от 0 до , имеет тенденцию к затуханию. Однако разумно предположить, что частоты выше некоторых можно не учитывать, т.к. их вес в форме прямоугольного импульса становится малым. В качестве критерия выбора ширины спектра используется энергетический критерий, согласно которому выбирается так, чтобы энергия отсеченной части была пренебрежимо мала по сравнению с энергией внутри интервала .
Для передачи сигнала по каналу важно согласовать 3 параметра:
Принято характеризовать сигнал объемом сигнала Vсиг=tсигFсрез Lсиг. а канал – объемом канала Vканала=tканалаFканалаLканала. Для того чтобы передавать сигнал по каналу нужно одновременное выполнение след условий: Vк>=Vc, tк>=tc, Fк>=Fc, Lк>=Lc. Бывает так что Vк>=Vc,но одно из дальнейших условий не выполняется. В этой ситуации возможны преобразования сигнала, которые позволяют подогнать сигнал под канал.
Пусть сигнал подвергается сжатию во времени. Новый сжатый сигнал связан с исходным сигналом соотношением . Длительность сигнала в раз меньше, чем исходного сигнала , т.е. . Спектр сигнала определится как . Введем новую переменную интегрирования , тогда , . С учетом этого можно записать , . Итак, при сжатии сигнала в раз на временной оси во столько же раз расширяется его спектр по оси частот. Очевидно, что при растягивании сигнала во времени имеет место сужение спектра. Выведенные соотношения показывают, что единственный способ сокращения ширины спектра сигнала без изменения его характера, состоит в том, чтобы растянуть явление во времени. Это свойство широко используется при согласовании характеристик сигнала и линии связи. Спектр сигнала, полученного в результате сложения сигналов. Спектр сигнала после его задержки во времени. Спектр сигнала после его дифференцирования. Спектр сигнала после его интегрирования.
|