Алгоритмы сжатия с потерями
Алгоритмы сжатия с потерями можно разделить на алгоритмы сжатия статических растровых изображений, алгоритмы сжатия видеопоследовательностей, алгоритмы сжатия звука Изображение – своеобразный тип данных, характеризуемый тремя особенностями. 1. Изображение обычно требует для хранения гораздо большего объема памяти, чем текст. 2. Второй особенностью изображений является то, что человеческое зрение при анализе оперирует контурами, общим переходом цветов и сравнительно нечувствительно к малым изменениям в изображении. Поэтому можно создать алгоритмы сжатия изображений, которые дадут распакованное изображение, не совпадающее с оригиналом, однако человек этого не заметит. Данная особенность человеческого зрения позволяет создавать специальные алгоритмы сжатия, ориентированные только на изображения. Эти алгоритмы позволяют сжимать изображения с высокой степенью сжатия и незначительными с точки зрения человека потерями. 3. Изображение в отличие, например, от текста обладает избыточностью в двух измерениях. Как правило, соседние точки, как по горизонтали, так и по вертикали, в изображении близки по цвету. Поэтому при создании алгоритмов сжатия изображений используют особенности структуры изображения. Только алгоритмы сжатия с потерями, разработанные исключительно для сжатия изображений, обеспечивают весьма значительные коэффициенты сжатия (до 200 и более) при достаточно высоком качестве восстановленных изображений. JPEG — один из самых новых и достаточно мощных алгоритмов. Практически он является стандартом де-факто для полноцветных изображений. Оперирует алгоритм областями 8х8, на которых яркость и цвет меняются сравнительно плавно. Алгоритм разработан группой экспертов в области фотографии специально для сжатия 24-битных изображений. JPEG — Joint Photographic Expert Group — подразделение в рамках ISO — Международной организации по стандартизации. Название алгоритма читается ['jei'peg]. В целом алгоритм основан на дискретном косинусоидальном преобразовании, применяемом к матрице изображения для получения некоторой новой матрицы коэффициентов. ДКП раскладывает изображение по амплитудам некоторых частот. Таким образом, при преобразовании мы получаем матрицу, в которой многие коэффициенты либо близки, либо равны нулю. Кроме того, благодаря несовершенству человеческого зрения, можно аппроксимировать коэффициенты более грубо без заметной потери качества изображения. Для этого используется квантование коэффициентов (quantization). В самом простом случае — это арифметический побитовый сдвиг вправо. При этом преобразовании теряется часть информации, но могут достигаться большие коэффициенты сжатия.
|