Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Цифровые интегральные микросхемы. Серии интегральных микросхем. Параметры цифровых ИМС. (СХЕМОТЕХНИКА)




Цифровые микросхемы предназначены для обработки, преобразования и хранения цифровой информации. Выпускаются они сериями. Внутри каждой серии имеются объединенные по функциональному признаку группы устройств: логические элементы, триггеры (автоматы с памятью), счетчики, элементы арифметических устройств (выполняющие различные математические операции) и т. д. Чем шире функциональный состав серии, тем большими возможностями может обладать цифровой автомат, выполненный на базе микросхем данной серии. Микросхемы, входящие в состав каждой серии, имеют единое конструктивно-технологическое исполнение, единое напряжение питания, одинаковые уровни сигналов логического 0 и логической 1. Все это делает микросхемы одной серии совместимыми.

В радиолюбительской практике наибольшее распространение получили микросхемы ТТЛ серии К155 и КМДП (серий К176 и К561).

Основные параметры логических элементов:

напряжение источ­ника питания,

уровни напряжений логического 0 и логической 1,

нагрузочная способность,

помехоустойчивость;

быстродействие,

потребляемая мощность.

Микросхемы ТТЛ рассчитаны на напряжение источника питания 5В±10%. Большая часть микросхем на КМОП структурах устойчиво работает при напряжении питания 3—15В, некоторые — при напряжении 9В±10%. Уровни логических 0 и 1 должны отличаться возможно больше. Различают пороговое напряжение логической еденицы U1пор — наименьшее напряжение высокого уровня на входе микросхемы, при котором напряжение на выходе изменяется от уровня логического 0 до уровня логической 1, а также пороговое напряжение логического нуля U°пop — наибольшее напряжение низкого уровня на входе микросхемы, при котором напряжение на выходе изменяется от уровня логической 1 до уровня логического 0. Для микросхем ТТЛ серий U1nop=2,4В; U°пор=0,4В.

Напряжение низкого и высокого уровней на выходе микросхем ТТЛ U1вых³2,4 В; U°вых£0,4 В. Для микросхем на КМДП структурах U1пор³0,7Uпит; U°пор£0,3Uпит. В то же время отклонения выходных напряжений U0вых и U1вых от нулевого значения и напряжения источника питания соответственно достигают всего нескольких десятков милливольт.

Способность элемента работать на определенное число входов других элементов без дополнительных устройств согласования характеризуется нагрузочной способностью. Чем выше нагрузочная способность, тем меньшее число элементов может понадобиться при реализации цифрового устройства. Однако при повышении нагрузочной способности другие параметры микросхем ухудшаются: снижаются быстродействие и помехоустойчивость, возрастает потребляемая мощность. В связи с этим в составе различных серий микросхем есть так называемые буферные элементы с нагрузочной способностью, в несколько раз большей, чем у основных элементов. Количественно нагрузочная способность оценивается числом единичных нагрузок, которые можно одновременно подключить к выходу микросхемы. В свою очередь единичной нагрузкой является вход основного логического элемента данной серии. Коэффициент разветвления по выходу для большинства логических элементов серий ТТЛ составляет 10, а для микросхем серий КМДП — до 100.

Помехоустойчивость базовых логических элементов оценивают в статическом и динамическом режимах. При этом статическая помехоустойчивость определяется уровнем напряжения, подаваемого на вход элемента относительно уровней логических 0 и 1, при котором состояние на выходе схемы не изменяется. Для элементов ТТЛ статическая помехоустойчивость составляет не менее 0,4 В, а для микросхем серий КМДП не менее 30% напряжения питания. Динамическая помехоустойчивость зависит от формы и амплитуды сигнала помехи, а также от скорости переключения логического элемента и его статической помехоустойчивости.

Динамические параметры базовых элементов оценивают, в первую очередь, быстродействием. Количественно быстродействие можно характеризовать предельной рабочей частотой, т. е. максимальной частотой переключения триггера, выполненного на этих базовых элементах. Предельная рабочая частота микросхем ТТЛ серии К155 составляет 10 МГц, а микросхем серий К176 и К561 на КМДП структурах — лишь 1 МГц. Быстродействие определяется так же, как среднее время задержки распространения сигнала tзд.р.ср=0,5(t1,0зд.р+t0,1зд.р), где t1,0зд.р и t0,1зд.р — времена задержки распространения сигнала при включении и выключении.

Среднее время задержки распространения сигнала является более универсальным параметром микросхем, так как, зная его, можно рассчитать быстродействие любой сложной логической схемы суммированием tзд.р.ср для всех последовательно включенных микросхем. Для микросхем серии К155 tзд.р.ср составляет около 20 нс, а для микросхем серии К176 — 200 нс.

Потребляемая микросхемой мощность в статическом режиме оказывается различной при уровнях логического нуля (Р0) и логической единицы на выходе (Р1). В связи с этим измеряют среднюю мощность потребления Рср = (Р0-P1)/2. Статическая средняя мощность потребления базовых элементов серии К155 составляет несколько десятков милливатт, а у элементов серий К176 и К561 она более чем в тысячу раз меньше. Следовательно, при необходимости построения цифровых устройств с малым потреблением целесообразно использовать микросхемы на КМОП структурах. Однако следует учитывать, что при работе в динамическом режиме мощность, потребляемая логическими элементами, возрастает. Поэтому помимо Рср задается также мощность Рдин, измеряемая на максимальной частоте переключении. Необходимо иметь в виду, что с повышением быстродействия мощность, потребляемая микросхемой, увеличивается.

Важнейшим показателем микросхем является надежность. Ее характеризуют интенсивностью частоты отказов. Средняя интенсивность отказов микросхем со средним уровнем интеграции составляет c=1*10-7 1/ч. Надежность цифровых устройств на микросхемах значительно превышает надежность аналогичных устройств на дискретных элементах.

 

2. Концепция файловых систем FAT32 и NTFS: структура логического диска, возможности, преимущества. (СПО)

аббревиатура FAT (file allocation table) расшифровывает­ся как «таблица размещения файлов». Этот термин относится к линейной таб­личной структуре со сведениями о файлах — именами файлов, их атрибутами и другими данными, определяющими местонахождение файлов (или их фрагмен­тов) в среде FAT. Элемент FAT определяет фактическую область диска, в кото­рой хранится начало физического файла.

В файловой системе FAT логическое дисковое пространство любого логического диска делится на две области (рис. 4.6): системную область и область данных.

Системная область логического диска создается и инициализируется при форма­тировании, а впоследствии обновляется при манипулировании файловой структу­рой. Область данных логического диска содержит файлы и каталоги, подчиненные корневому. Она, в отличие от системной области, доступна через пользователь­ский интерфейс DOS. Системная область состоит из следующих компонентов, расположенных в логическом адресном пространстве подряд:

□ загрузочной записи (boot record, BR);

□ зарезервированных секторов (reserved sector, ResSecs);

□ таблицы размещения файлов (file allocation table, FAT);

□ корневого каталога (root directory, RDir).

Максимальный размер файла – 4Гб, не поддерживает установку прав доступа к файлам и папкам.

Одним из основных понятий, используемых при работе с NTFS, является поня­тие тома (volume). Возможно также создание отказоустойчивого тома, занимаю­щего несколько разделов, то есть использование RAID-технологии. Как и мно­гие другие системы, NTFS делит все полезное дисковое пространство тома на кластеры — блоки данных, адресуемые как единицы данных. NTFS поддержива­ет размеры кластеров от 512 байт до 64 Кбайт; стандартом же считается кластер размером 2 или 4 Кбайт.

NTFS:Все дисковое пространство в NTFS делится на две неравные части (рис. 4.12). Первые 12 % диска отводятся под так называемую MFT-зону — пространство, которое может занимать, увеличиваясь в размере, главный служебный метафайл MFT (MFT (master file table) — это специальный файл, главная системная структура данных, которая и позволяет определять местонахождение всех остальных файлов.). Запись каких-либо данных в эту область невозможна. MFT-зона всегда держится пустой — это делается для того, чтобы самый главный, служебный файл (MFT) по возможности не фрагментировался при своем росте. Остальные 88 % тома представляют собой обычное пространство для хранения файлов.

 

MFT (master file table, общая таблица файлов) представляет собой централизо­ванный каталог всех остальных файлов диска, в том числе и себя самого. MFT поделен на записи фиксированного размера в 1 Кбайт (Размер файловых записей MFT для тома — минимум 1 Кбайт и максимум 4 Кбайт — оп­ределяется во время форматирования тома.), и каждая запись соответ­ствует какому-либо файлу (в общем смысле этого слова). Первые 16 файлов но­сят служебный характер и недоступны операционной системе — они называются метафайлами, причем самый первый метафайл — сам MFT. Эти первые 16 эле­ментов MFT — единственная часть диска, имеющая строго фиксированное поло­жение. Копия этих же 16 записей хранится в середине тома для надежности, по­скольку они очень важны. Остальные части MFT-файла могут располагаться, как и любой другой файл, в произвольных местах диска — восстановить его по­ложение можно с помощью его самого, «зацепившись» за самую основу — за пер­вый элемент MFT.







Дата добавления: 2015-04-19; просмотров: 1952. Нарушение авторских прав; Мы поможем в написании вашей работы!


Рекомендуемые страницы:


Studopedia.info - Студопедия - 2014-2021 год . (0.003 сек.) русская версия | украинская версия