Билет21
Пластическая деформация и рекристаллизация металлов и сплавов. Сдвигово-дислокационный механизм пластической деформации. Изменение структуры и свойств при холодной и горячей деформациях. Возврат и рекристаллизация. Деформация может быть упругой, исчезающей после снятия нагрузки, и пластической, остающейся после снятия нагрузки. При упругом деформировании под действием внешней силы изменяется расстояние между атомами в крист. решётке. Снятие нагрузки устраняет причину, вызвавшую изменение межатомного расстояния, атомы становятся на прежние места и деформация исчезает. При пластическом деформировании одна часть кристалла перемещается по отношению к другой. Если нагрузку снять, то перемещённая часть кристалла не возвратится на старое место, деформация сохранится. Наклёп. Перекристаллизация. Дисперсионное твердение. Если пластическая деформация осуществляется при температуре выше Tр, то наклёпа нет. Эта деформация называется горячей пластической деформацией. Холодная пластическая деформация (давление) происходит при температуре ниже Tр, возникает упрочнение. Рекристаллизация – возвращение свойств в первоначальное состояние в процессе нагрева наклёпанного металла. Процессы: уменьшение количества дефектов, рост зерна (до исходного). А.А. Бочвар показал: Tр = a·TплК (в Кельвинах). Чем выше Tпл, тем выше Tр. Вольфрам, молибден – самые тугоплавкие Me. Если чистый Me - a» 0,2, механические смеси - a» 0,4, твёрдые растворы - a» 0,6, химические соединения - a» 0,8. Пластическая деформация происходит в результате скольжения или двойникования. Ранее предполагали, что при скольжении одна часть кристалла сдвигается относительно другой части на целое число периодов как единое целое. Необходимое для этого напряжение получается на несколько порядков выше действительного сдвигового напряжения. Для железа теоретическое значение сдвигового напряжения МПа, . В основу современной теории пластической деформации взяты следующие положения: · скольжение распространяется по плоскости сдвига последовательно, а не одновременно; · скольжение начинается от мест нарушений кристаллической решетки, которые возникают в кристалле при его нагружении. Схема механизма деформации представлена на рис.6.6 а. В равновесном состоянии дислокация неподвижна. Под действием напряжения экстраплоскость смещается справа налево при незначительном перемещении атомов. Нижняя часть плоскости Р/S (SR) сместится вправо и совместится с нижним краем экстра- плоскости РQ. QR- остаточная деформация.
При дальнейшем движении дислокация пройдет всю плоскость скольжения и выйдет на поверхность зерна. При этом верхняя часть зерна сдвинута относительно нижней на один межатомный период решетки (рис. 6.6 б). При каждом перемещении дислокации на один шаг необходимо разорвать связь только между двумя рядами атомов в плоскости Р/S, а не между всеми атомами, расположенными выше и ниже плоскости скольжения. Необходимое сдвиговое напряжение при этом мало, равно практически действительному.. Рис. 6.6. Схема дислокационного механизма пластической деформации а – перемещение атомов при двихении краевой дислокации на одно межатомное расстояние; б – перемещение дислокации через весь кристалл
Требования, предъявляемые к материалам для зубчатых колес, способы повышения их конструкционной прочности. Выбор сталей для зубчатых колес и их упрочняющей обработки в зависимости от уровня требуемых характеристик. Хромоникелевые стали 20ХН, 12ХН3А применяют для изготовления деталей средних и больших размеров, работающих на износ при больших нагрузках (зубчатые колеса, шлицевые валы). Одновременное легирование хромом и никелем, который растворяется в феррите, увеличивает прочность, пластичность и вязкость сердцевины и цементованного слоя. Стали мало чувствительны к перегреву. Большая устойчивость переохлажденного аустенита в области перлитного и промежуточного превращений обеспечивает высокую прокаливаемость хромоникелевых сталей и позволяет проводить закалку крупных деталей с охлаждением в масле и на воздухе.
|