Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Понятие вычислительной сложности





Пусть A – алгоритм решения некоторого класса задач, а n – размерность задачи этого класса, тогда вычислительная сложность алгоритма – это некоторая функция , отображающая размерность задачи в «математическое» время ее решения, то есть дающая оценку количества некоторых операций, необходимых для решения данным алгоритмом любой задачи данного класса как функции от n. Функция fA(n) является критерием качества алгоритма с точки зрения возможных временных затрат. Эффективным является понятие полиномиальный алгоритм, у которого растет не быстрее, чем полином от n. Алгоритм, имеющий экспоненциальную сложность: , пригоден для решения задач ограниченной размерности. Такие задачи определяют принадлежащими к классу NP – non-polynomial.

Вычислительная сложность, так же как и погрешность, может иметь оценку в лучшем и в худшем. Оценка в худшем (сверху) получается в том случае, если входные данные являются худшими из возможных. Например, для задачи на графах, предположение, что граф – полный.

Улучшение верхней границы означает нахождение алгоритма с лучшей характеристикой в худшем. Как правило, это обеспечивает использование другого метода или других операций преобразования графа, либо специфических приемов снижения вычислительной сложности, направленных на оптимизацию алгоритма.

Однако ориентация на худший случай нередко приводит к пессимистическим оценкам, которые могут привести к неправильному выбору используемого алгоритма. Более реалистичной является оценка в среднем. Для задач на графы такая оценка появляется при предположении, что граф – однородный с некоторой средней степенью вершин.

 








Дата добавления: 2015-04-19; просмотров: 530. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия