Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Точность алгоритма. Докажите, что алгоритм Прима является точным





Характеристиками алгоритма являются его точность и временная (вычислительная) сложность и емкостная сложность. Эти характеристики используются не только для сравнительной оценки и выбора алгоритма из нескольких возможных, но и для выбора более эффективных преобразований модели исходного описания объекта в модель результата, а также разборе и возможном синтезе структур данных, позволяющих снизить вычислительную сложность алгоритма.

Доказательство точности алгоритма либо оценка погрешности – фундаментальная и наиболее сложная проблема теории алгоритмов. Алгоритм называется точным, если на всех допустимых наборах входных данных задачи, он обеспечивает получение оптимального решения.

Существует несколько подходов к доказательству и оценке точности:

1. Первый подход заключается в получении решения задачи для специально сконструированных наборов входных данных и сравнении результатов с полученными заранее точными решениями. Но правомерность такого заключения о точности алгоритма, как правило, экспериментально доказать это невозможно, а теоретическое доказательство – специальная и весьма сложная задача.

2. Второй подход ориентирован на установление факта, что не существует такого набора входных данных, для которого А(Di) opt. Хотя в принципе подходы логически равнозначны, но они различаются по методам и возможностям доказательства.

Оба этих подхода неконструктивны, так как не ориентируют разработчика на разработку, а лишь на установление того факта, точный это алгоритм или приближенный.

3. С точки зрения теоретико-множественного преобразования входных данных решение задачи заключается в поэтапном преобразовании графа исходного описания объекта в его часть или в другой граф.

Этот подход является наиболее перспективным.

Таким образом, алгоритм решения задачи на графах выполняет конечную последовательность операций над ними, возможно полностью или частично повторяющихся. Следовательно, если можно доказать, что действия над графами на каждом шаге их преобразования являются «правильными», т.е. единственно возможными с точки зрения получения оптимального решения, независимо от набора входных данных, то будет доказано, что алгоритм – точный.

Для того чтобы выбрать и осуществить правильное преобразование графов, обеспечивающее разработку точного алгоритма, необходимо знать возможные операции над графом и математические свойства графов объекта и результатов проектирования. Т.о. при разработке алгоритма надо не только выбрать метод, на котором он будет основан, но и глубоко изучить математические свойства графов и тщательно проанализировать операции и весь процесс преобразования.

Рассмотрим изложенный подход на примере доказательства точности алгоритма Прима построения минимального остовного дерева (МОД). Как правило, моделью исходного описания объекта является неориентированный взвешенный полный граф.

Содержательное описание алгоритма:

1. Выбираем ребро минимального веса.

2. Среди ребер, инцидентных вершинам построенного поддерева, ищется имеющее минимальный вес, причем это ребро не должно образовывать циклов. Этот шаг повторяется до тех пор, пока не будут соединены все вершины.

Доказательство точности алгоритма Прима основано на использовании операций добавления и удаления рёбер и свойствах графа-результата – остовного дерева:

1. Дерево – это связный граф без циклов.

2. Добавление в некоторое остовное дерево нового ребра при количестве его ребер ≥ 2 приводит к возникновению ровно одного цикла.

 

 

 







Дата добавления: 2015-04-19; просмотров: 1460. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия