Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Точность алгоритма. Докажите, что алгоритм Прима является точным





Характеристиками алгоритма являются его точность и временная (вычислительная) сложность и емкостная сложность. Эти характеристики используются не только для сравнительной оценки и выбора алгоритма из нескольких возможных, но и для выбора более эффективных преобразований модели исходного описания объекта в модель результата, а также разборе и возможном синтезе структур данных, позволяющих снизить вычислительную сложность алгоритма.

Доказательство точности алгоритма либо оценка погрешности – фундаментальная и наиболее сложная проблема теории алгоритмов. Алгоритм называется точным, если на всех допустимых наборах входных данных задачи, он обеспечивает получение оптимального решения.

Существует несколько подходов к доказательству и оценке точности:

1. Первый подход заключается в получении решения задачи для специально сконструированных наборов входных данных и сравнении результатов с полученными заранее точными решениями. Но правомерность такого заключения о точности алгоритма, как правило, экспериментально доказать это невозможно, а теоретическое доказательство – специальная и весьма сложная задача.

2. Второй подход ориентирован на установление факта, что не существует такого набора входных данных, для которого А(Di) opt. Хотя в принципе подходы логически равнозначны, но они различаются по методам и возможностям доказательства.

Оба этих подхода неконструктивны, так как не ориентируют разработчика на разработку, а лишь на установление того факта, точный это алгоритм или приближенный.

3. С точки зрения теоретико-множественного преобразования входных данных решение задачи заключается в поэтапном преобразовании графа исходного описания объекта в его часть или в другой граф.

Этот подход является наиболее перспективным.

Таким образом, алгоритм решения задачи на графах выполняет конечную последовательность операций над ними, возможно полностью или частично повторяющихся. Следовательно, если можно доказать, что действия над графами на каждом шаге их преобразования являются «правильными», т.е. единственно возможными с точки зрения получения оптимального решения, независимо от набора входных данных, то будет доказано, что алгоритм – точный.

Для того чтобы выбрать и осуществить правильное преобразование графов, обеспечивающее разработку точного алгоритма, необходимо знать возможные операции над графом и математические свойства графов объекта и результатов проектирования. Т.о. при разработке алгоритма надо не только выбрать метод, на котором он будет основан, но и глубоко изучить математические свойства графов и тщательно проанализировать операции и весь процесс преобразования.

Рассмотрим изложенный подход на примере доказательства точности алгоритма Прима построения минимального остовного дерева (МОД). Как правило, моделью исходного описания объекта является неориентированный взвешенный полный граф.

Содержательное описание алгоритма:

1. Выбираем ребро минимального веса.

2. Среди ребер, инцидентных вершинам построенного поддерева, ищется имеющее минимальный вес, причем это ребро не должно образовывать циклов. Этот шаг повторяется до тех пор, пока не будут соединены все вершины.

Доказательство точности алгоритма Прима основано на использовании операций добавления и удаления рёбер и свойствах графа-результата – остовного дерева:

1. Дерево – это связный граф без циклов.

2. Добавление в некоторое остовное дерево нового ребра при количестве его ребер ≥ 2 приводит к возникновению ровно одного цикла.

 

 

 







Дата добавления: 2015-04-19; просмотров: 1460. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия