Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Конструирование оценочной функции для верхней и нижней границ целевой функции. (Рассмотрите на примере задачи поиска простой цепи графа)





Пример: задача определения маршрута min/max длины в ориентированном графе.

Дерево декомпозиции по методу в ширину:

 


Рассмотрим вариант поиска дерева min длинны. В качестве оценочной функции будем использовать суммарную длину ребер, уже включенных в рассматриваемый фрагмент маршрута. Метод ветвления – поиск в ширину, отсечение – по нижней границе.

 

Оценочная функция в виде суммы длин ребер, уже включенных в данный фрагмент, является «слабой» - в задаче на минимум такая функция дает минимальное значение нижней границы. Конструирование оценочной функции является сложной задачей. Оно должно базироваться на анализе сущности задачи и св-в нижней или верхней границы. В данном случае сущность задания - последовательное включение ребер в строящийся фрагмент при рассмотренных ранее свойствах функции, которые могут быть использованы в качестве нижних и верхних границ.

 

Для нижней границы существуют св-ва: не должна уменьшаться

нижняя граница должна быть = Fцк (значение ЦФ в конечной вершине)

Рассмотрим для нашей задачи пример конструирования более «сильной» оценочной функции для нижней и верхней границы.

При поиске пути min длинны оценочная ф-ция используемая для вычисления может состоять из 2-х компонент: первой составляющей должна быть сумма длин ребер, уже включенных в данный фрагмент; вторая составляющая – сумма ребер min длинны по всем ветвям решений, порождаемым данной вершиной до ближайшей конечной.

Для верхней границы существуют св-ва: не должна возрастать,

в конечных вершинах она должна быть = Fцк (значение ЦФ в конечной вершине).

Для задачи на максимум верхняя граница оценочной функции для любой вершины дерева решений будет не меньше значения целевой функции маршрута максимальной длины, порожденного этой вершиной, если в качестве второй составляющей оценочной функции будет использоваться сумма ребер максимальной длины среди маршрутов для каждого уровня поддерева решений с корнем в этой вершине.

Суммирование необходимо выполнять, начиная от данной вершины до последней конечной.

 

 







Дата добавления: 2015-04-19; просмотров: 484. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия