Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Криптография с открытым ключом (несимметричные шифры). Однонаправленная функция и однонаправленная функция с секретом. Проблема существования однонаправленной функции





 

Криптография с открытым ключом – ключи не могут быть получены один из другого простым преобразованием, и один из них можно опубликовать, сохранив второй при этом в секрете.

Однонаправленная функция: прямое преобразование в ней – это Р задача, а вот обратная функция к ней - это NP задача

Однонаправленная функция с секретом: прямое преобразование – это Р задача, а обратное NP задача, если неизвестен секрет, с помощью секрета обратная функция тоже сводится к Р задаче. (Очевидно, что вычисление секрета –это и есть NP-часть задачи)

Если ключи шифрования и расшифровки вычисляются друг из друга, как однонаправленная функция с секретом, то достаточно держать в секрете только первый из них и секрет самой функции.

 

Существование однонаправленных функций до сих пор не доказано. Если f является односторонней функцией, то нахождение обратной функции является трудновычислимой (по определению), но легкопроверяемой задачей (путем вычисления f на ней). Таким образом, из существования односторонней функции следует, что P ≠ NP. Однако, не известно, влечет ли за собой P ≠ NP существование односторонних функций. Современная асимметричная криптография основывается на предположении, что односторонние функции все-таки существуют.

 

Пример потенциально однонаправленной функции: возведение в квадрат по модулю. Обратная к ней функция – извлечение квадратного корня по модулю – это NP задача.

 

30. Целые числа: делимость, свойство евклидовости, алгоритм Евклида (с примером), расширенный алгоритм Евклида (с примером).

Дели́мость — одно из основных понятий арифметики и теории чисел, связанное с операцией деления. Если для некоторого целого числа и целого числа существует такое целое число , что то говорят, что число делится нацело на или что делит

При этом число b называется делителем числа a, делимое a будет кратным числа b, а число q называется частным от деления a на b.

Алгоритм Евклида – это способ нахождения наибольшего общего делителя двух целых чисел, а также наибольшей общей меры двух соизмеримых отрезков.

Чтобы найти наибольший общий делитель двух целых положительных чисел, нужно сначала большее число разделить на меньшее, затем второе число разделить на остаток от первого деления, потом первый остаток – на второй и т.д. Последний ненулевой положительный остаток в этом процессе и будет наибольшим общим делителем данных чисел.

Обозначив исходные числа через и , положительные остатки, получающиеся в результате делений, через , а неполные частные через , можно записать алгоритм Евклида в виде цепочки равенств:

Пример: a=54, b=15

a b r
     
     
     
     

НОД(54,15)=3

Расширенный алгоритм Эвклида:

Связан с так называемым соотношением Безу:

«Пусть a, b — целые числа, хотя бы одно из которых не нуль. Тогда существуют такие целые числа x, y, что выполняется соотношение: НОД(a,b) = x·a + y·b.»

Позволяет найти не только наибольший общий делитель. Но и числа x,y.

 

 

При этом значения x и y будут содержаться в x2 и y2 на том шаге, когда d окажется равным 0.

 

 

Пример: a=92, b=14

 

a b c d x1 x2 y1 y2
               
              -6
          -1 -6  
        -1     -13

 

Проверка:

2=2*92-13*14; 2=184-182; 2=2







Дата добавления: 2015-04-19; просмотров: 971. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия