Сокрытие данных в изображении и видео
Развитие мультимедийных средств сопровождается большим потоком графической информации в вычислительных сетях. При генерации изображения, как правило, используются значительное количество элементарных графических примитивов, что представляет особый интерес для стеганографических методов защиты. Визуальная среда (цифровые изображения и видео) обладают большой избыточностью различной природы: · кодовой избыточностью, возникающей при неоптимальном описании изображения; · межпиксельной избыточностью, которая обусловлена наличием сильной корреляционной зависимостью между пикселями реального изображения; · психовизуальной зависимостью, возникающей из-за того, что орган зрения человека не адаптирован для точного восприятия изображения пиксель за пикселем и воспринимает каждый участок с различной чувствительностью. Информационным видеопотокам, которые состоят из последовательности отдельных кадров изображения, помимо указанных выше, присуща также избыточность, обусловленная информационной, технической, временной и функциональной (смысловой) зависимостью между кадрами. В последнее время создано достаточное количество методов сокрытия информации в цифровых изображениях и видео, что позволило провести их систематизацию и выделить следующие группы: · методы замены во временной (пространственной) области; · методы сокрытия в частотной области изображения; · широкополосные методы; · статистические методы; · методы искажения; · структурные методы. Общий принцип данных методов замены заключается в замене избыточной, малозначимой части изображения битами секретного сообщения. Для извлечения сообщения необходимо знать место, где была размещена скрываемая информация. Наиболее распространенным методом этого класса является метод замены наименьшего значащего бита (НЗБ). Популярность метода НЗБ обусловлена его простотой и тем, что он позволяет скрывать в относительно небольших файлах довольно большие объемы информации. Данный метод обычно работает с растровыми изображениями, которые представлены в формате без сжатия (например, GIF и BMP). Основным его недостатком является сильная чувствительность к малейшим искажениям контейнера. Для ослабления этой чувствительности часто применяют помехоустойчивое кодирование. Суть метода НЗБ заключается в замене наименее значащих битов пикселей изображения битами секретного сообщения. В простейшем случае проводится замена НЗБ всех последовательно расположенных пикселей изображения. Однако, так как длина секретного сообщения обычно меньше количества пикселей изображения, то после его внедрения в контейнере будут присутствовать две области с различными статистическими свойствами (область, в которой незначащие биты были изменены, и область, в которой они не менялись). Это может быть легко обнаружено с помощью статистических тестов. Для создания эквивалентного изменения вероятности всего контейнера секретное сообщение обычно дополняют случайными битами так, чтобы его длина в битах была равна количеству пикселей в исходном изображении.
Изображение дерева со скрытым с помощью цифровой стеганографии в нём другим изображением. Изображение спрятано с помощью удаления всех, кроме двух младших битов с каждого цветового компонента и последующей нормализации
.
Изображение кота, извлеченное из изображения дерева, расположенного выше
Рис. 2.35 - Пример работы метода НЗБ
Другой подход, методслучайного интервала, заключается в случайном распределении битов секретного сообщения по контейнеру, в результате чего расстояние между двумя встроенными битами определяется псевдослучайно. Эта методика наиболее эффективна при использовании потоковых контейнеров (видео). Для контейнеров произвольного доступа (изображений) может использоваться метод псевдослучайной перестановки. Для сокрытия данных можно также воспользоваться палитрой цветов, которая присутствует в формате изображения. Палитра из N цветов определяется как список пар индексов (i, ci), который определяет соответствие между индексом i и его вектором цветности ci. В изображении каждому пикселю присваивается индекс в палитре. Так как цвета в палитре не всегда упорядочены, то скрываемую информацию можно кодировать последовательностью хранения цветов в палитре. Существует N! различных способов перестановки N-цветной палитры, что вполне достаточно для сокрытия небольшого сообщения. Однако методы сокрытия, в основе которых лежит порядок формирования палитры, также неустойчивы: любая атака, связанная с изменениями палитры, уничтожает секретное сообщение. Зачастую соседние цвета в палитре не обязательно являются схожими, поэтому некоторые стеганометоды перед сокрытием данных проводят упорядочивание палитры так, что смежные цвета становятся подобными. Например, значения цвета может быть упорядочено по расстоянию d в RGB-пространстве, где . Так как орган зрения человека более чувствителен к изменениям яркости цвета, то намного лучше сортировать содержимое палитры по значениям яркости сигнала. После сортировки палитры можно изменять НЗБ индексов цвета без особого искажения изображения. Некоторые стеганометоды предусматривают уменьшение общего количества значений цветов (до N/2) путем “размывания” изображения. При этом элементы палитры дублируются так, чтобы значения цветов для них различались незначительно. В итоге каждое значение цвета размытого изображения соответствует двум элементам палитры, которые выбираются в соответствии с битом секретного сообщения.
|