Студопедия — Поглощение солнечной радиации в атмосфере
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Поглощение солнечной радиации в атмосфере






В атмосфере поглощается сравнительно небольшое количество солнечной радиации, при этом главным образом в инфракрасной части спектра. Это поглощение - избирательное: разные газы поглощают радиацию в разных участках спектра и в разной степени.

Азот поглощает радиацию только очень малых длин волн в ультрафиолетовой части спектра. Энергия солнечной радиации в этом участке спектра совершенно ничтожна, и потому поглощение азотом практически не отражается на интенсивности солнечной радиации. В большей степени, но все же очень мало поглощает солнечную радиацию кислород - в двух узких участках видимой части спектра и в ультрафиолетовой его части. Более сильным поглотителем солнечной радиации является озон. Его содержание в воздухе, даже в стратосфере, очень мало; тем не менее он настолько сильно поглощает ультрафиолетовую радиацию, что из солнечной постоянной теряется несколько процентов. В результате поглощения в верхних слоях атмосферы в солнечном спектре у земной поверхности не наблюдаются волны короче 0,29 мк.

Сильно поглощает радиацию в инфракрасной области спектра углекислый газ; но его содержание в атмосфере ничтожно, и поэтому поглощение им в общем незначительно. Основным же поглотителем радиации в атмосфере является водяной пар, сосредоточивающийся в тропосфере и, особенно в нижней ее части. Из общего состава солнечной радиации водяной пар поглощает значительную долю в инфракрасной области спектра. Хорошо поглощают солнечную радиацию также атмосферные аэрозоли, т. е. облака и твердые частички, взвешенные в атмосфере.

В целом в атмосфере поглощается 15-20% радиации, приходящей от Солнца к Земле. В каждом отдельном месте поглощение меняется с течением времени в зависимости как от переменного содержания в воздухе поглощающих субстанций, главным образом водяного пара, облаков и пыли, так и от высоты солнца над горизонтом, т. е. от толщины слоя воздуха, проходимого лучами на пути сквозь атмосферу.

 

14.Радиационый баланс и радиационый бюджет географической оболочки.

Тепловой баланс и режим земной поверхности и тропосферы.

 

радиацио́нный бала́нс

алгебраическая сумма потоков радиации в определённом объёме или на определённой поверхности. Напр., когда говорят о радиационном балансе атмосферы или системы «Земля – атмосфера», чаще всего подразумевают радиационный баланс земной поверхности, определяющий теплообмен на нижней границе атмосферы. Он представляет собой разность между поглощённой суммарной солнечной радиацией и эффективным излучением земной поверхности. Последнее, в свою очередь, равно разности собственного длинноволнового излучения и встречного длинноволнового излучения атмосферы. Радиационный баланс выражается в единицах энергии на единицу площади (напр., Вт/м²) в единицу времени. Он может быть измерен балансомером или вычислен по данным метеорологических измерений. Радиационный баланс имеет положительные и отрицательные значения. Положительные означают избыток тепла на поверхности земли, который компенсируется оттоком энергии в виде турбулентных и кондуктивных потоков, расхода тепла на фазовые переходы и т. д. Отрицательные означают недостаток тепла, и в этом случае он восполняется притоком энергии из атмосферы и/или из глубины почвы либо воды. Это, в свою очередь, определяет области прогрева или охлаждения воздуха над подстилающей поверхностью, что может влиять на режим атм. циркуляции. На Земле радиационный баланс колеблется в широких пределах: наибольшие его значения – в тропических океанах (до 1000 Вт/м²), наименьшие – в центр. р-нах Антарктиды, где они круглый год отрицательны.

 

В приходную часть бюджета входят прямая радиация Q, рассеянная радиация В и встречное излучение А. Расход (Е) состоит из отраженной радиации С и излучения земной поверхности И:
R = Q + D + E - C – И.
Если включить эффективное излучение I, то формула примет следующий вид:
R = Q + D – I – C.
Есть и другие формулы для выражения радиационного баланса:
R = Q (1-a) – I, где

Q – суммарная радиация, а – альбедо.
Радиационный баланс может быть положительным, когда приход тепла больше расхода, нулевым, когда они уравновешиваются, и отрицательным, когда потеря тепла (расход) больше прихода.

 

Теплово́й бала́нс Земли́; — баланс энергии процессов теплопередачи и излучения в атмосфере и на поверхности Земли.

Теплово́й бала́нс

Земли, соотношение прихода и расхода энергии (лучистой и тепловой) на земной поверхности, в атмосфере и в системе Земля — атмосфера. Основным источником энергии для подавляющего большинства физических, химических и биологических процессов в атмосфере, гидросфере и в верхних слоях литосферы является Солнечная радиация.

 

Сезонные колебания суммарной радиации
В экваториальных и тропических широтах высота Солнца и угол падения солнечных лучей по месяцам изменяются незначительно. Суммарная радиация во все месяцы характеризуется большими величинами, сезонная смена тепловых условий или отсутствует, или весьма незначительна. В экваториальном поясе слабо намечаются два максимума, соответствующие зенитальному положению Солнца.

В умеренном поясе в годовом ходе радиации резко выражен летний максимум, в котором месячная величина суммарной радиации не меньше тропической. Число теплых месяцев уменьшается с широтой.

В полярных поясах радиационный режим резко изменяется. Здесь в зависимости от широта от нескольких суток до нескольких месяцев прекращается не только нагревание, но и освещение. Летом же освещение здесь непрерывно, и это повышает сумму месячной радиации.

Тепловой баланс земной поверхности и системы Земля-тропосфера
Тепло, получаемое земной поверхностью, преобразуется и перераспределяется атмосферой и гидросферой. Тепло расходуется главным образом на испарение, турбулентный теплообмен и на перераспределение тепла между сушей и океаном.

Наибольшее количество тепла расходуется на испарение воды с океанов и материков. В тропических широтах океанов на испарение затрачивается примерно 100-120 ккал/см2 в год, а в акваториях с теплыми течениями до 140 ккал/см2 в год, что соответствует испарению слоя воды в 2 м мощностью. В экваториальном поясе на испарение затрачивается значительно меньше энергии, то есть примерно 60 ккал/см2 в год; это равносильно испарению однометрового слоя воды.

На материках максимальные затраты тепла на испарение приходятся на экваториальную зону с ее влажным климатом. В тропических широтах суши расположены пустыни с ничтожным испарением. В умеренных широтах затраты тепла на испарение в океанах в 2,5 раза больше, чем на суше. Поверхность океана поглощает от 55 до 97 % всей радиации, падающей на него. На всей планете на испарение расходуется 80%, а на турбулентный теплообмен около 20 % солнечной радиации.

Тепло, затраченное на испарение воды, передается атмосфере при конденсации пара в виде скрытой теплоты парообразования. Этот процесс выполняет главную роль в нагревании воздуха и движении воздушных масс.

Максимальное для всей тропосферы количество тепла от конденсации водяного пара получают экваториальные широты - примерно 100-140 ккал/см2 в год. Это объясняется поступлением сюда огромного количества влаги, приносимой пассатами из тропических акваторий, и поднятием воздуха над экватором. В сухих тропических широтах количество скрытой теплоты парообразования, естественно, ничтожно: менее 10 ккал/см2 в год в материковых пустынях и около 20 ккал/см2 в год над океанами. Решающую роль в тепловом и динамическом режиме атмосферы играет вода.

Радиационное тепло поступает в атмосферe также через турбулентный теплообмен воздуха. Воздух – плохой проводник тепла, поэтому молекулярная теплопроводность может обеспечить нагрев только незначительного (единицы метров) нижнего слоя атмосферы. Тропосфера нагревается путем турбулентного, струйного, вихревого перемешивания: воздух нижнего, прилегающего к земле слоя, нагревается, струями поднимается, на его место опускается верхний холодный воздух, который тоже нагревается. Таким образом тепло быстро передается от почвы воздуху, от одного слоя к другому.

Турбулентный поток тепла больше над материками и меньше над океанами. Максимального значения он достигает в тропических пустынях, до 60 ккал/см2 в год, в экваториальной и субтропических зонах снижается до 30-20 ккал/см2, а в умеренных – 20-10 ккал/см2 в год. На большей площади океанов вода отдает атмосфере около 5 ккал/см2 в год, и только в субполярных широтах воздух от Гольфстрима и Куросиво получает тепла до 20-30 ккал/см2 в год.

В отличие от скрытой теплоты парообразования турбулентный поток атмосферой удерживается слабо. Над пустынями он передается вверх и рассеивается, поэтому пустынные зоны и выступают как области охлаждения атмосферы.

Тепловой режим континентов в связи с их географическим положением различен. Затраты тепла на испарение на северных материках определяется их положением в умеренном поясе; в Африке и Австралии – аридностью их значительных площадей. На всех океанах огромная доля тепла затрачивается на испарение. Затем часть этого тепла переносится на материки и утепляет климат высоких широт.

 

 

15.Качественые отличия географической оболочки от других оболочек Земли.

 

Качественные отличия Г. о. от других оболочек Земли: Г. о. формируется под действием как земных, так и космических процессов; исключительно богата разными видами свободной энергии; вещество присутствует во всех агрегатных состояниях; чрезвычайно разнообразна степень агрегированности вещества — от свободных элементарных частиц через атомы, ионы, молекулы до химических соединений и сложнейших биологических тел; концентрация тепла, притекающего от Солнца; наличие человеческого общества.

 

 

16.Основные закономерности географической оболочки.

 

Основными закономерностями географической оболочки являются: целостность, ритмичность, круговорот веществ и широтная зональность (высотная поясность), развитие (нарастание сложности структуры).

Остановимся на развитии географической оболочки более подробно. С философской точки зрения, развитие – это необратимое, направленное, закономерное изменение материи и сознания, их универсальное свойство. В результате развития возникает новое качественное состояние объекта – его состава и структуры. Различают следующие две формы развития: 1) эволюционное развитие (постепенность) и 2) революционное развитие (скачок). Выделяют также две линии развития: а) прогрессивное (восходящее) развитие и б) регрессивное (нисходящее) развитие.

Отмеченные свойства и закономерности географической оболочки характеризуют ее как самостоятельную целостную систему, свойства которой не сводятся к сумме свойств слагающих ее частей. Однако целостность этой системы отнюдь не означает ее внутреннего однообразия. Напротив, она характеризуется чрезвычайно сложной структурой, являясь неоднородной как в вертикальном, так и в горизонтальном направлении.

В вертикальном направлении географическая оболочка распадается на ряд компонентных (частных) оболочек, в каждой из которых преобладает вещество в определенном агрегатном состоянии или форме ее организации. Эта дифференциация вещества произошла в процессе развития Земли как одной из планет Солнечной системы. Вещество частных оболочек формирует различные компоненты природы: рельеф с образующими его горными породами, почвы с корой выветривания, сообщества растений и животных (биоценозы), водные и воздушные массы и т.д.

Горизонтальная неоднородность географической оболочки обусловлена прежде всего территориальной дифференциацией энергии, связанной с формой и происхождением планеты Земля: различным количеством лучистой энергии, поступающей из Мирового пространства, и внутренней энергии Земли, получаемым тем или иным участком оболочки. Она также образовалась в процессе длительного развития географической оболочки и выражается в существовании природных территориальных и природных аквальных комплексов (соответственно – ПТК и ПАК) – исторически обусловленных и территориально ограниченных закономерных сочетаний взаимосвязанных компонентов природы. Эти комплексы и являются основным объектом комплексных физико-географических исследований.

Как вертикальная, так и горизонтальная неоднородность географической оболочки возникла в процессе ее формирования и развития, но вертикальная обусловлена исключительно дифференциацией вещества, а горизонтальная связана главным образом с пространственной дифференциацией энергии. Так как подавляющая часть энергии поступает в географическую оболочку извне и подвержена значительным изменениям в пространстве и во времени, горизонтальная дифференциация менее устойчива, более динамична и постоянно усложняется в процессе эволюции географической оболочки. В результате этого в пределах географической оболочки сформировалось большое количество ПТК разной величины и различной степени сложности, как бы вложенных друг в друга и представляющих собой систему соподчиненных единиц. Определенную иерархическую лестницу, так называемую единую таксономическую систему.

Единая таксономическая система природных комплексов. В единой иерархической системе таксономических единиц намечаются три уровня организации ПТК: планетарный (глобальный), региональный и топологический (локальный), обусловленные разными закономерностями дифференциации географической оболочки на каждом из этих уровней.

Топологические (локальные) природные комплексы. Каждый более мелкий комплекс возникает и обособляется в процессе развития вмещающего его более крупного ПТК, поэтому, чем мельче комплекс, тем он моложе, тем проще устроен и тем более динамичен.

17.Суточное движение Земли и его географические следствия..Понятие «Звездные сутки» и «Солнечные сутки».

 







Дата добавления: 2015-04-19; просмотров: 922. Нарушение авторских прав; Мы поможем в написании вашей работы!



Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия