Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Обработка результатов прямых многократных измерений





Методика получения результатов при проведении многократ­ных прямых измерений установлена ГОСТ 8.207—76 «ГСИ. Пря­мые измерения с многократными наблюдениями. Методы обра­ботки результатов наблюдения. Основные положения». Перед рассмотрением методики напомним, что ГОСТ 8.207 разработан и утвержден в период действия ныне отмененных ГОСТ 16263 на термины и определения в области метрологии, ГОСТ ов се­рии «П.», устанавливающих правила математической стати­стики при определении закона распределения, и отсутствия каких бы то ни было представлений о неопределенности ре­зультатов измерений.

Основные операции и их последовательность Методика обра­ботки результатов прямых многократных измерений включает в себя следующие операции:

• определение наличия грубых погрешностей и исключение промахов;

• исключение известных систематических погрешностей из результатов наблюдений;

• вычисление среднего арифметического исправленных ре­зультатов наблюдений, принимаемого за результат изме­рения;

• вычисление оценки среднего квадратического отклонения результата наблюдений;

• вычисление оценки среднего квадратического отклонения результата измерения;

• проверку гипотезы о том, что результаты наблюдений принадлежат нормальному распределению. Проверку ги­потезы о том, что результаты наблюдений принадлежат

нормальному распределению, следует проводить с уровнем значимости q от 10 до 2%. Конкретные значения уровней значимости должны быть указаны в конкретной методике выполнения измерений;

• вычисление доверительных границ случайной погрешно­сти (случайной составляющей погрешности) результата измерения;

• вычисление границ неисключенной систематической по­грешности (неисключенных остатков систематической по­грешности) результата измерения;

• вычисление доверительных границ погрешности результата измерения. Для определения доверительных границ по­грешности результата измерения доверительную вероят­ность Р, как правило, принимают равной 0,95. В тех слу­чаях, когда измерение нельзя повторить, помимо границ, соответствующих доверительной вероятности Р = 0,95, до­пускается указывать границы для доверительной вероятно­сти Р = 0,99. В особых случаях, например при измерениях, результаты которых имеют значение для здоровья людей, допускается вместо Р = 0,99 принимать более высокую до­верительную вероятность.

Подготовка результатов наблюдений к обработке Способы обнаружения грубых погрешностей должны быть указаны в методике выполнения измерений. Важное значение при опре­делении наличия грубых погрешностей имеет вопрос о законе распределения результатов измерений. Как правило, результа­ты измерений считают принадлежащими к нормальному рас­пределению. Для нормального распределения разработано не­сколько критериев оценки наличия грубых погрешностей. В целом их действие основано на представлении о том, что из­меряемая величина может характеризоваться большим коли­чеством измерительной информации (генеральной выборкой) и ее ограниченным количеством (выборкой). Результаты об­работки будут тем точнее, чем на больший объем информа­ции они опираются. Поэтому критерии отнесения погрешно­стей к грубым можно разделить на критерии сопоставления имеющихся результатов с характеристиками генеральной вы­борки и характеристиками распределения собственно полу­ченных результатов.

Если известны характеристики генеральной выборки (сред­нее квадратическое отклонение) или они могут быть получены в результате обработки предшествующих опытов, то следует пользоваться критериями, основанными на известном гене­ральном среднем квадратическом отклонении, и только когда оно неизвестно и нет возможности его получить, следует поль­зоваться критериями, основанными на использовании выбо­рочного среднего квадратического отклонения. Так как грубые погрешности способны заметно повлиять на результат измере­ния, рассмотрим некоторые, наиболее употребляемые из из­вестных критериев.

1. Значение генерального среднего квадратического отклонения неизвестно.

В таком случае имеются результаты наблюдений, составляю­щие упорядоченную выборку, которую можно представить в виде:

Сомнению могут быть подвергнуты, естественно, результаты, заметно отличающиеся по величине от остальных, т.е. либо наименьший (x 1), либо наибольший n).

Среднее арифметическое значение выборки [хи хп] составит:

Принадлежность х1 или хп к данной выборке, распределен­ной по нормальному закону, определяется по значению соот­ношений:

ношений:

Если значения Un или U1 превысят критические значения р, приведенные в табл. 4.3, то соответствующий результат не при­надлежит нормальному распределению и из результатов измере­ний должен быть исключен.

2. Значение генерального среднего квадратического отклонения известно. Значение генерального среднего арифметического неиз­вестно.

Практика измерений столь обширна, что довольно часто встречается ситуация, когда из предшествующих опытов значе­ние генерального среднего квадратического (обозначим его а Для различия со средним квадратическим выборки S) известно, а генеральное среднее арифметическое — нет. В этом случае со­ставляют упорядоченную выборку (4.62) и подсчитывают сред­нее арифметическое (4.63). По полученным данным подсчиты­вают значения коэффициентов:

Если полученные значения превысят критические значения β, приведенные в табл. 4.4, то соответствующие результаты анор­мальны и из полученного ряда измерений должны быть ис­ключены.

Таблица 4.4. Предельные значения р для случая известного значения







Дата добавления: 2015-04-19; просмотров: 1967. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия