Метод плоскопараллельного перемещения
Изменение взаимного положения проецируемого объекта и плоскостей проекций методом плоскопараллельного перемещения осуществляется путем изменения положения геометрического объекта так, чтобы траектория движения её точек находилась в параллельных плоскостях. Плоскости носители траекторий перемещения точек параллельны какой-либо плоскости проекций (рис. 8.1). Траектория произвольная линия. При параллельном переносе геометрического объекта относительно плоскостей проекций, проекция фигуры хотя и меняет свое положение, но остается конгруэнтной проекции фигуры в ее исходном положении. Рисунок 8.1 Определение натуральной величины отрезка методом плоскопараллельного перемещения Свойства плоскопараллельного перемещения: 1. При всяком перемещении точек в плоскости параллельной плоскости П1, её фронтальная проекция перемещается по прямой линии, параллельной оси х. 2. В случае произвольного перемещения точки в плоскости параллельной П2, её горизонтальная проекция перемещается по прямой параллельной оси х.
17. Пересечение пирамиды прямой общего положения. Определение видимости участков прямой. Пересечение прямой линии с поверхностью. Для построения точки пересечения прямой с поверхностью через прямую следует провести вспомогательную плоскость и найти линию пересечения этой плоскости с поверхностью. Точка пересечения (иди точка встречи заданной прямой и построенной линии или фигуры сечения) на поверхности и будет искомой точкой пересечения прямой с поверхностью.Сложность решения задачи зависит от трудоемкости нахождения линии пересечения, которая определяется следами поверхности и расположением прямой относительно как поверхности, так и плоскости проекций. Чтобы получить рациональное решение, следует пользоваться наиболее простым способом определения линии пересечения. Этого можно достичь двумя путями: выбором положения вспомогательной секущей плоскости; переводом секущей прямой в частное положение. Вспомогательная секущая плоскость - проецирующая Задание: определить точки пересечения прямой т и пирамиды SABC (рис. 12.1). Решение: для решения задачи прямую т заключают во фронтально проецирующую плоскость (). Фронтальная проекция фигуры сечения совпадает с фронтальной проекцией следа плоскости 2. Отмечают проекции точек (12, 22, 32) пересечения ребер пирамиды (SA, SB, SC), в которых фронтальный след плоскости пересекает эти ребра. Зная положение фигуры сечения (12, 22, 32) на фронтальной проекции, определяют горизонтальную проекцию фигуры сечения (11,21, 31). Соединив горизонтальные проекции (11,21,31) точек (1, 2, 3) прямолинейными отрезками ((1121), (2131), (З111)), получают фигуру сечения — треугольник 123. Далее определяют точки пересечения горизонтальной проекции фигуры сечения (112131) с горизонтальной проекцией т1 прямой т — точки m1 и n1. Затем строят фронтальные проекции (М2 и N2) точек пересечения прямой т с поверхностью пирамиды SABC. Если чертеж принято считать языком техники, а начертательную геометрию - грамматикой этого языка, то технический рисунок, дающий представление о форме изображаемого предмета, можно сравнить с образным рассказом. В зависимости от характера объекта и поставленной задачи технический рисунок выполняют по правилам аксонометрических проекций, по законам линейной перспективы или по другим специальным правилам. При создании нового изделия творческая идея конструктора проходит несколько стадий: от рисунка к чертежу и от чертежа к изготовлению изделия в материале. 18. Взаимное пересечение многогранника и поверхности вращения.
|