Модели знаний
Знания – это выявленные закономерности предметной области (принципы, связи, законы), позволяющие решать задачи в этой области. Для хранения знаний используются базы знаний. Знания могут быть классифицированы по следующим категориям: поверхностные – знания о видимых взаимосвязях между отдельными событиями и фактами в предметной области; глубинные – абстракции, аналогии, схемы, отражающие структуру и процессы в предметной области. Существуют десятки моделей представления знаний для различных предметных областей. Большинство из них может быть сведено к следующим классам:продукционные;семантические сети;фреймы;формальные логические модели. Продукционная модель, или модель, основанная на правилах, позволяет представить знания в виде предложений типа: Если (условие), то(действие). Под условием понимается некоторое предложение-образец, по которому осуществляется поиск в базе знаний, а под действием — действия, выполняемые при успешном исходе поиска (они могут быть промежуточными, выступающими далее как условия, и терминальными или целевыми, завершающими работу системы). Семантическая сеть — это ориентированный граф, вершины которого — понятия, а дуги — отношения между ними. Понятиями обычно выступают абстрактные или конкретные объекты, а отношения — это связи типа: "это" ("is"), "имеет частью" ("has part"), "принадлежит", "любит". Характерной особенностью семантических сетей является обязательное наличие трех типов отношений:класс — элемент класса;свойство — значение; пример элемента класса. Под фреймом понимается абстрактный образ или ситуация. Различают фреймы-образцы, или прототипы, хранящиеся в базе знаний, и фреймы - экземпляры, которые создаются для отображения реальных ситуаций на основе поступающих данных. Модель фрейма является достаточно универсальной, поскольку позволяет отобразить все многообразие знаний о мире через:фреймы-структуры, для обозначения объектов и понятий (заем, залог, вексель);фреймы-роли (менеджер, кассир, клиент);фреймы-сценарии (банкротство, собрание акционеров, празднование именин);фреймы-ситуации (тревога, авария, рабочий режим устройства) и др. Важнейшим свойством теории фреймов является заимствованное из теории семантических сетей наследование свойств. Основным преимуществом фреймов как модели представления знаний является способность отражать концептуальную основу организации памяти человека, а также ее гибкость и наглядность. В представлении знаний выделяют формальные логические модели, основанные на классическом исчислении предикатов I порядка, когда предметная область или задача описывается в виде набора аксиом. Эта логическая модель применима в основном в исследовательских "игрушечных" системах, так как предъявляет очень высокие требования и ограничения к предметной области. В промышленных же экспертных системах используются различные ее модификации и расширения. Модели знаний – продукционная, фреймовая, семантических сетей – обладают практически равными возможностями представления знаний. Дополнительно каждая модель знаний обладает следующими свойствами:продукционная модель позволяет легко расширять и усложнять множество правил вывода; фреймовая модель позволяет усилить вычислительные аспекты обработки знаний за счет расширения множества присоединенных процедур;модель семантических сетей позволяет расширять список отношений между вершинами и дугами сети, приближая выразительные возможности сети к уровню естественного языка.
|