Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Прямые, плоскости, параллельность





Уже такое основное понятие, как параллельность прямых, нуждается в новом определении:

две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не имеют общих точек. Так что не попадайтесь в одну из излюбленных экзаменаторами ловушек -- не пытайтесь «доказывать», что через две параллельные прямые можно провести плоскость: это верно по определению параллельности прямых! Знаменитую планиметрическую аксиому о единственности параллельной включают и в аксиомы стереометрии, а с её помощью доказывают главное свойство параллельных прямых в пространстве:

· Через точку, не лежащую на прямой, можно провести одну и только одну прямую параллельно данной.

Сохраняется и другое важное свойство параллельных прямых, называемое транзитивностью параллельности:

· Если две прямые а и b параллельны третьей прямой с, то они параллельны друг другу.

Но доказать это свойство в стереометрии сложнее. На плоскости непараллельные прямые обязаны пересекаться и потому не могут быть одновременно параллельны третьей (иначе нарушается аксиома параллельных). В пространстве существуют непараллельные и притом непересекающиеся прямые -- если они лежат в разных плоскостях. О таких прямых говорят, что они скрещиваются.

На рис. 4 изображён куб; прямые АВ и ВС пересекаются, АВ и CD -- параллельны, а АВ и В?С? -- скрещиваются. В дальнейшем мы часто будем прибегать к помощи куба, чтобы иллюстрировать понятия и факты стереометрии. Наш куб склеен из шести граней-квадратов. Исходя из этого, мы будем выводить и другие его свойства. Например, можно утверждать, что прямая АВ параллельна C?D?, потому что обе они параллельны общей стороне CD содержащих их квадратов.

В стереометрии отношение параллельности рассматривается и для плоскостей: две плоскости или прямая и плоскость параллельны, если они не имеют общих точек. Прямую и плоскость удобно считать параллельными и в том случае, когда лежит в плоскости. Для плоскостей и прямых справедливы теоремы о транзитивности:

· Если две плоскости параллельны третьей плоскости, то они параллельны между собой.

· Если прямая и плоскость параллельны некоторой прямой(или плоскости), то они параллельны друг другу.

Наиболее важный частный случай второй теоремы- признак параллельности прямой и плоскости:

· Прямая параллельна плоскости, если она параллельна некоторой прямой в этой плоскости.

А вот признак параллельности плоскостей:

· Если две пересекающиеся прямые в одной плоскости соответственно параллельны двум пересекающимся прямым в другой плоскости, то и плоскости параллельны.

Часто используется и такая простая теорема:

· Прямые, по которым две параллельные плоскости пересекаются третьей, параллельны друг другу.

Посмотрим еще раз на куб (рис. 4). Из признака параллельности прямой и плоскости следует, например, что прямая А?В? параллельна плоскости АВСD(так как она параллельна прямой АВ в этой плоскости), а противоположные грани куба, в частности А?В?С?D? и ABCD, параллельны по признаку параллельности плоскостей: прямые A?B? и B?С? в одной грани соответственно параллельны прямым АВ и ВС в другой. И чуть менее простой пример. Плоскость, содержащая параллельные прямые AA? и СС?, пересекают параллельные плоскости АВСD и A?B?C?D? по прямым АС и А?С?, значит, эти прямые параллельны: аналогично, параллельные прямые В?С и А?D. Следовательно, параллельные плоскости АВ?С и А?DC, пересекающие куб по треугольникам.







Дата добавления: 2015-06-12; просмотров: 719. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия