Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Изображение пространственных фигур





Есть такой афоризм «Геометрия -- это искусство правильно рассуждать на неправильном чертеже». Действительно, если вернуться к изложенным выше рассуждениям, то окажется:

единственная польза, которую мы извлекли из сопровождавшего их рисунка куба, состоит в том, что он сэкономил нам место на объяснении обозначений. С тем же успехом можно было изобразить его, как тело на рис. 4, я, хотя, очевидно, представленное на нём «нечто» не только не куб, но и не многогранник. И всё же в приведённом афоризме заключена лишь часть правды. Ведь прежде, чем «рассуждать» -- излагать готовое доказательство, надо его придумать. А для этого нужно ясно представлять себе заданную фигуру, соотношения между её элементами. Выработать такое представление помогает хороший чертёж. Более того, как мы увидим, в стереометрии удачный чертёж может стать не просто иллюстрацией, а основой решения задачи.

Художник (вернее, художник-реалист) нарисует наш куб таким, каким мы его видим (рис. 5, б), т. е. в перспективе, или центральной проекции.

При центральной проекции из точки О (центр проекции) на плоскость а произвольная точка Х изображается точкой X', в которой а пересекается с прямой ОХ (рис. 6). Центральная проекция сохраняет прямолинейное расположение точек, но, как правило, переводит параллельные прямые в пересекающиеся, не говоря уже о том, что изменяет расстояния и углы. Изучение её свойств привело к появлению важного раздела геометрии (см. статью «Проективная геометрия»).

Но в геометрических чертежах используется другая проекция. Можно сказать, что она получается из центральной когда центр О удаляется в бесконечность и прямые ОХ становятся параллельными.

Выберем плоскость а и пересекающую её прямую l. Проведём через точку Х прямую, параллельную l. Точка X', в которой эта прямая встречается с а, и есть параллельная проекция Х на плоскость, а вдоль прямой l (рис. 7).


Проекция фигуры состоит из проекций всех её точек. В геометрии под изображением фигуры понимают её параллельную проекцию.

В частности, изображение прямой линии -- это прямая линия или (в исключительном случае, когда прямая параллельна направлению проекции) точка. На изображении параллельные прямые так и остаются параллельными, сохраняется здесь и отношение длин параллельных отрезков, хотя сами длины и изменяются. Всё вышесказанное можно уложить в одну короткую формулировку основного свойства параллельной проекции:

· Если АВ =k CD, а A?,B?,C? и D?- проекции точек A,B,C и D, то A?B?= k C?D?.

Черта здесь означает направленные отрезки (векторы), а равенство -- совпадение не только длин, но и направлений (рис. 7). Таким образом, если задать изображения точек А и В, то будут однозначно определены и изображения всех точек Х прямой АВ, поскольку множитель k в равенстве AX = kAB на параллельной проекции и оригинале одинаков. Аналогично, по изображениям трёх точек, не лежащих на одной прямой, однозначно восстанавливаются изображения всех точек проходящей через них плоскости, а задав изображения четырёх точек, не находящихся в одной плоскости, мы предопределяем изображения всех точек пространства.

В то же время изображением данной тройки точек, т. е. треугольника, может служить треугольник любой заданной формы. В этом легко убедиться: проведём через сторону Поданного треугольника ЛВС любую плоскость а, построим в ней треугольник АВС нужной формы и спроектируем треугольник АВС на б вдоль прямой l = СС? (рис. 8). Взяв в качестве А В С равнобедренный прямоугольный треугольник и достроив его до квадрата ABCD, увидим, что в параллельной проекции квадрат легко превращается в любой параллелограмм. Более того, можно доказать, что изображением любой данной треугольной пирамиды могут быть любые четыре точки, не лежащие на одной прямой, вместе с соединяющими их отрезками.

Правильно выбранное изображение помогает решать задачи. Найдём, например, отношения, в которых треугольное сечение A?BD нашего куба (рис. 9, а) делит отрезок, соединяющий середины Р и Q рёбер AD и В?С?. Посмотрим на куб со стороны бокового ребра ВВ?, а точнее говоря, спроектируем куб вдоль прямой BD па плоскость АА?С?С. Понятно,чтопроекцией будет сам прямоугольник АА?С?С с проведённым в нём отрезком, соединяющим середины оснований (точки В и D совпадут;

рис. 9, б); рассматриваемое сечение превратится в отрезок (рис. 9, б), а точки Р и Q станут серединами отрезковА1)и ВiCi. Очевидно, что на нашем рисунке A?Q = 3PB, а значит, РМ: MQ = 1: 3. В силу основного свойства параллельной проекции,эторавенство верно и в пространстве. Та же проекция позволяет найти отношение между частями любого проведённого в кубе отрезка,накоторые он рассекается плоскостью A?BD: в частности, отрезок KQ, где К -- середина АВ. вновь делится ею в отношении 1: 3, а диагональ АС, -- в отношении 1:2.

Ещё эффектнее решения планиметрических задач, которые получают, «выходя в пространство», т. е. представляя данную плоскую фигуру в виде изображения некоего пространственного объекта. Вот одна из таких задач, требуется построить треугольник с вершинами на трёх данных лучах ОА, 0В и ОС с общим началом О так, чтобы его стороны проходили через три данные внутри углов АОВ, ВОСк СОАточки Р, Q и R.

Это очень трудная задача. Но если мы догадаемся посмотреть на её чертёж (рис. 10, а) как на изображение трёхгранного угла с тремя точками на его гранях, то, конечно, поймем, что имеем дело с задачей на построение сечения этого угла плоскостью PQR. Решение задачи приводится на рис 10, б; кстати сказать, оно поясняет и основной прием построения сечений. Из произвольной точки Е луча ОС проектируем данные точки R и Q на плоскость ОАВ; получаем точки R? и Q?. Плоскость искомого сечения пересекает плоскость ОАВ по прямой МР. Дальнейшее очевидно.







Дата добавления: 2015-06-12; просмотров: 667. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия