Студопедия — РАСТВОРИТЕЛИ, ПРИМЕНЯЕМЫЕ ДЛЯ ПРИГОТОВЛЕНИЯ ЖИДКИХ ЛЕКАРСТВЕННЫХ ФОРМ
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

РАСТВОРИТЕЛИ, ПРИМЕНЯЕМЫЕ ДЛЯ ПРИГОТОВЛЕНИЯ ЖИДКИХ ЛЕКАРСТВЕННЫХ ФОРМ






Под растворителями подразумевают химические соединения или смеси, способные растворять различные вещества, то есть образовывать с ними однородные системы — растворы, состоящие из двух или большего числа компонентов. В качестве растворителей применяют: воду очищенную, этиловый спирт, глицерин, жирные и минеральные масла, реже — эфир, хлороформ. В настоящее время появилась возможность несколько расширить ассортимент растворителей за счет кремнийорганических соединений, этилен- и пропиленгликолей, диметилсульфоксида (ДМСО) и других синтетических веществ.

Требования, предъявляемые к растворителям:

- должны быть устойчивыми при хранении, химически и фармакологически индифферентными;

- должны обладать высокой растворяющей способностью;

- не должны обладать неприятным вкусом и запахом;

- должны быть дешевыми, общедоступными и иметь простой способ получения;

- не должны быть огнеопасными и летучими;

- не должны служить средой для развития микроорганизмов.

В соответствии с химической классификацией растворители подразделяют на неорганические и органические соединения.

Вода очищенная (Aqua purificata). Из неорганических соединений наиболее часто применяемым растворителем в медицинской практике является вода очищенная (по ГФ X — вода дистиллированная).

Вода фармакологически индифферентна, доступна и хорошо растворяет многие лекарственные вещества, но в то же время в нейдовольно быстро гидролизуются некоторые лекарственные вещества иразмножаютсямикроорганизмы.

Вода очищенная может быть получена дистилляцией, ионным обменом, электролизом, обратным осмосом. Качество воды очищенной регламентируется ФС 42-2619—89: она должна быть бесцветной, прозрачной, без запаха и вкуса; рН может колебаться в пределах 5,0—7,0; не должна содержать восстанавливающих веществ, нитратов, нитритов,хлоридов, сульфатов,следов аммиака и других примесей.

Из методов получения воды очищенной наиболее распространенный метод дистилляции (перегонки).

Перегонка воды должна производится в специально оборудованном для этих целей помещении (дистилляционной). Стены этого помещения должны быть окрашены масляной краской или выложены облицовочной плиткой и содержаться в абсолютной чистоте. В этих помещениях запрещается производить другие работы — мыть грязную посуду, стирать белье, хранить посторонние предметы. В виде исключения может быть разрешена только стерилизация растворов лекарственных веществ.

На качество воды очищенной влияетисходный состав питьевой воды, конструктивные особенности аквадистилляторов, а также условия сбора и хранения воды. Для получения воды очищенной в городах обычно используютводопроводную воду, отвечающую санитарным требованиям, установленным для питьевой воды. Колодезная, речная и др. вода нуждается впредварительной водоподготовке, поскольку обычно содержит как растворенные, так и механические, и коллоидно-взвешенные примеси: органические вещества, аммиак, соли, сообщающие воде жесткость, и другие вещества. Способы очистки зависят от характера содержащихся в воде примесей.

Механические примеси отделяют отстаиванием с последующим сливанием воды с осадка (декантацией) или фильтрованием. С этой целью используют фильтры, выполненные в виде емкости цилиндрической формы, заполненные антрацитом или кварцевым песком. Емкости имеют крышку и дно, снабженное устройством для ввода, вывода и распределения воды внутри фильтра. Фильтры могут быть однослойные (например, только слой антрацита) или двухслойные (антрацит и кварцевый песок). Высота загрузки колеблется в зависимости от количества взвешенных частиц и желаемого промывочного эффекта.

Разрушение органических примесей. Перед дистилляцией к 100 л воды, содержащей органические примеси, прибавляют в виде раствора 2,5 г калия перманганата (или 1% раствор калия перманганата 25мл на 10 л воды), перемешивают и оставляют стоять на 6—8 часов. Выделяющийся активный кислород окисляет органические вещества. Затем воду сливают и фильтруют.

Связывание аммиака. На 10 л воды прибавляют 5,0 г алюминия сульфата или алюмокалиевых квасцов в растворенном виде. При этом проходит и побочная реакция: избыток квасцов реагирует с хлоридами, которые часто присутствуют в воде, с выделением газообразного водорода хлорида, легко переходящего в дистиллят:

Если после использования квасцов очищенная вода дает реакцию с серебра нитратом, необходимо перед перегонкой добавить еще двузамещенный натрия фосфат.

Для связывания водорода хлорида к 10 л воды добавляют 3,5 г натрия фосфата двузамещенного (из расчета 2/3 от количества взятых квасцов).

При наличии углерода диоксида и других летучих примесей прибавляют известковую воду. По истечении 20—30 минут воду декантируют, фильтруют и после этого производят перегонку.

Умягчение воды. Нежелательно присутствие в воде солей кальция и магния, сообщающих ей временную и постоянную жесткость, в результате чего при дистилляции воды на стенках испарителя образуется накипь. Кроме того, при перегонке жесткой воды быстро выходят из строя нагревательные элементы дистиллятора. Временную жесткость обусловливает наличие кальция и магния гидрокарбонатов. От них можно освободиться кипячением воды. При этом гидрокарбонаты переходят в карбонаты и выпадают в осадок, который отфильтровывают.

Но в этом случае вода насыщается углерода оксидом, который медленно удаляется при кипячении, тем самым снижается рН воды очищенной. Поэтому для устранения временной жесткости целесообразно применять кальция гидроксид.

Постоянная жесткость воды обусловлена присутствием кальция и магния хлоридов, сульфатов и других солей. Ее устраняют обработкой воды натрия карбонатом.

Доступный для каждой аптеки известково-содовый способ умягчения воды. Сущность его в том, что в воду добавляют одновременно раствор кальция гидроксида и раствор натрия карбоната. Под действием кальция гидроксида удаляется временная (карбонатная) жесткость, так как кальция и магния гидрокарбонаты переходят в карбонаты и выпадают в осадок.

Под действием натрия карбоната выпадают соли постоянной (некарбонатной) жесткости: сульфаты, хлориды и другие соли кальция и магния. Кальция гидроксид связывает также находящийся в воде углерода диоксид:

Коагуляция коллоидных примесей. Коллоидную муть можно удалить лишь после предварительного укрупнения взвешенных частиц. Для разрушения коллоидной системы необходимо нейтрализовать электрический заряд частиц. Лишенные заряда частицы под влиянием сил взаимного притяжения соединяются — коагулируют. Укрупненные частицы обладают такой массой, при которой они теряют свою кинетическую устойчивость и выпадают в осадок. Нейтрализация заряда коллоидных частиц достигается добавлением к воде другого вещества также коллоидного характера, но частицы которого несут противоположный заряд.

Находящиеся в воде в коллоидно-дисперсном состоянии соединения кремневой кислоты несут отрицательные заряды, поэтому для их коагуляции пригодны лишь вещества, заряженные в воде положительно. В качестве такого вещества чаще всего применяют алюминия сульфат или алюмокалиевые квасцы. Обработку воды перед дистилляцией следует производить в отдельных емкостях во избежание загрязнения аквадистилляторов.

Водопроводная вода, подготовленная вышеуказанным способом, все же содержит достаточное количество солей, которые при дистилляции оседают на стенках испарителя и электронагревательных элементах, в результате чего значительно снижается производительность дистиллятора и нередко выходят из строя электронагреватели. Поэтому наиболее перспективно создание аппаратов в комплексе с водоподготовителями. В настоящее время предложена электромагнитная обработка воды.

Метод магнитной обработки воды заключается в пропускании ее через зазоры, образованные в корпусе специального устройства между подвижными и неподвижными магнитами. В результате воздействия на воду магнитного поля изменяются условия кристаллизации солей при дистилляции. Вместо плотных осадков на стенках дистилляторов образуются рыхлые, а в толще воды — взвешенный шлам. При использовании устройства обязателен ежедневный сброс воды из аппарата для удаления шлама. Предложены электрохимический диализный аппарат с применением полупроницаемых мембран, а также ионообменная установка для получения обессоленной воды с использованием гранулированных ионитов и ионообменного целлюлозного волокна.

Дистилляция воды. Общий принцип получения воды дистиллированной заключается в том, что питьевую воду, прошедшую водоподготовку, помещают в аквадистиллятор, состоящий из таких основных частей: испарителя, пароотводящей части (шлема и соединительных трубок), конденсатора (холодильника) и сборника. Для контроля уровня воды в камере испарения имеется водомерное стекло. Испаритель с водой нагревают до кипения. Пары воды поступают в конденсатор, где они сжижаются и в виде дистиллята поступают в сборник. Все нелетучие примеси, находившиеся в исходной воде, остаются в аквадистилляторе.

Контроль качества воды очищенной. Вода очищенная должна подвергаться химическому и бактериологическому контролю. Ежедневно (из каждого баллона, а при подаче воды по трубопроводу — на каждом рабочем месте) — анализу на отсутствие хлоридов, сульфатов, солей кальция и др. Ежеквартально — полному химическому анализу. Два раза в квартал направляется в местную санитарно-бактериологическую лабораторию для бактериологического исследования.

Воду очищенную хранят в асептических условиях не более 3 суток в закрытых емкостях, изготовленных из материалов, которые не изменяют свойств воды и защищают ее от механических включений и микробиологических загрязнений.

Вода деминерализованная (Aqua demineralisata) (или обессоленная) по своему качеству соответствует воде очищенной и в последнее время все чаще используется вместо нее. Высокое содержание солей в исходной воде ухудшает условия перегонки, а также качество воды очищенной. Поэтому очень важным является обессоливание жесткой природной воды перед перегонкой.

Для обессоливания (деминерализации) воды применяют различные установки. Принцип их действия основан на том, что вода освобождается от солей пропусканием ее через ионообменные колонки. Основная часть таких установок — колонки, заполненные катионитными и анионитными смолами.

Этанол, спирт этиловый (Spirltus aethylicus, splrltus vini). Спирт этиловый С2Н5ОН представляет собой прозрачную, бесцветную подвижную жидкость с характерным запахом и жгучим вкусом, кипит при 78°С.

Для фармацевтических целей применяется этанол, получаемый путем сбраживания сырья, содержащего полисахариды, в основном, картофеля и зерна. Этанол другого происхождения для приготовления лекарственных форм не используется в связи с присутствием недопустимых примесей (спирт метиловый и другие соединения).

Спирт этиловый можно отнести к неводным растворителям с определенной долей условности, так как применяют не абсолютный этанол, а водно-спиртовые растворы различной крепости. Концентрацию водно-спиртового раствора выражают в объемных процентах, которые показывают количество миллилитров абсолютного этанола в 100 мл раствора при 20 °С.

Этанол в одних случаях используют как хороший растворитель для многих органических и неорганических соединений (органические кислоты, эфирные, жирные масла, камфора, ментол, йод, танин, левомицетин, алкалоиды и др.), а в других — как лекарственное средство в виде растворов, содержащих спирт. Растворяющая способность этанола зависит от его концентрации. Так, например, масло касторовое легко растворяется в безводном (абсолютном) спирте, 85% этанол растворяет около 10% масла касторового, 70 % — только 1%, а 40% — его практически не растворяет.

Спирт смешивается во всех соотношениях с водой, глицерином, эфиром, хлороформом. Он нейтрален, не окисляется кислородом воздуха, имеет бактериостатическое и бактерицидное действие в зависимости от концентрации раствора. Наибольшие антисептические свойства имеет спирт 70%, так как легко проникает внутрь клетки через оболочку микроорганизмов и убивает протоплазму. В концентрациях выше 70% спирт вызывает денатурацию белковой оболочки, что препятствует его проникновению внутрь клетки к протоплазме, в связи с чем бактерицидное свойство спиртов более высоких концентраций не проявляется.

К отрицательным свойствам спирта следует отнести его неиндифферентность, опьяняющее действие, смертельная доза 96% спирта этилового около 210— 300 мл. Он способствует осаждению белков, ферментов, легко воспламеняется, имеет высокую гигроскопичность, несовместимость с окислителями (наличие в молекуле гидроксильной группы): калия перманганатом, бромом, крепкой кислотой азотной и др. Воспламеняемость и летучесть спирта прямо зависит от его крепости. С некоторыми солями (кальция хлоридом, магния нитратом) спирт этиловый дает кристаллические соединения.

Качество этанола регламентируется ГФ X (Spiritus aethylicus 95 %).

При смешивании спирта этилового и воды происходит контракция (сжатие), что сопровождается выделением тепла и изменением объема, причем объем смеси всегда меньше суммы обоих объемов. Например, при смешивании 500 мл спирта этилового и 500 мл воды объем получающейся при этом смеси будет равен не 1000, а 940 мл. Это явление связано с образованием спиртогидратов разного состава с взаимоуплотнением молекул спирта и воды при их расположении в пространстве. Максимум сжатия наблюдается у водно-спиртовой смеси, имеющей крепость 54—56%. При концентрации спирта 35% и ниже явление контракции при разбавлении спирта водой уже не наблюдается. Спирт крепостью ниже 40% обладает, подобно воде, гидролитическими свойствами, а в концентрации выше 40 % этой способностью не обладает.

Крепость спирта определяют при помощи спиртометров, рефрактометрическим методом или по плотности спиртового раствора.

Хлороформ (Chloroformium). Это бесцветная, прозрачная подвижная летучая жидкость с характерным запахом и сладким вкусом. Смешивается во всех соотношениях со спиртом этиловым, эфиром. В хлороформе хорошо растворяются лекарственные вещества, нерастворимые или мало растворимые в воде: кислота борная, бутадион, камфора, левомицетин, хлорбутанолгидрат, ментол и др. Он обладает, как все галогенопроизводные, наркотическим и дезинфицирующим действием, относится к сильнодействующим веществам, поэтому применение его ограничено.

Используется, главным образом, в лекарственных формах для наружного применения. В неводных растворах хлороформ обычно прописывают в комбинации с каким-либо основным растворителем: спиртом этиловым, жирными маслами и др. Более широко он используется в технологии линиментов. В отличие от спирта этилового хлороформ дозируют по массе. Пары не воспламеняются, но вредны для здоровья. Хранят в хорошо укупоренных емкостях в прохладном защищенном от света месте.

Эфир медицинский (Aether medicinales). Это бесцветная, прозрачная легко воспламеняющаяся жидкость, своеобразного запаха, жгучего вкуса. Эфир медицинский часто называют просто эфиром. Он растворяет многие лекарственные вещества; растворяется в 12 частях воды, смешивается во всех соотношениях со спиртом этиловым, хлороформом, петролейным эфиром, жирными и эфирными маслами. По растворяющей способности он аналогичен хлороформу: в нем растворяются те же лекарственные вещества и примерно в той же концентрации, что и в хлороформе.

Пары эфира ядовиты. Они имеют склонность опускаться на пол, очень подвижны и могут накапливаться на далеком расстоянии от источника испарения эфира. Температура воспламенения эфира — 40°С. Эфир так же, как и хлороформ, обладает наркотическим действием, относится к сильнодействующим веществам в неводных растворах используется редко и только в комбинации с другими растворителями, дозируют его по массе.

В технологии готовых лекарственных средств эфир находит применение при приготовлении некоторых настоек и экстрактов, а также в производстве коллодия.

Учитывая легкую воспламеняемость эфира, взрывоопасность его паров с воздухом, при работе с ним необходимо строго соблюдать технику безопасности. Хранят эфир медицинский в хорошо укупоренных емкостях в прохладном защищенном от света месте вдали от огня.

Глицерин (Glycerinum) представляет собой бесцветную сиропообразную прозрачную гигроскопичную жидкость сладкого вкуса, нейтральной реакции, растворяется в воде, спирте и в смеси эфира со спиртом, но не растворяется в эфире, хлороформе и жирных маслах. В глицерине легко растворяются: кислота борная, натрия тетраборат, хлоралгидрат, натрия гидрокарбонат, танин, протаргол и др. Глицериновые растворы легко смываются водой и имеют меньшую адсорбцию растворенных веществ, чем отличаются от растворов жирных масел. В фармацевтической практике применяют не абсолютный глицерин (так же, как и этанол), а разбавленный водой с содержанием глицерина 86—90 % и плотностью 1,225—1,235, то есть с содержанием воды 12—15%.

Это связано с тем, что безводный глицерин очень гигроскопичен и обладает раздражающими свойствами. Применяют его, главным образом, в лекарственных формах для наружного применения.

Растворы глицерина в концентрациях 25% и выше проявляют антисептическое действие, более разбавленные— орошая питательная среда для микроорганизмов. Вследствие большой вязкости растворение в нем лекарственных веществ при комнатной температуре происходит медленно, поэтому его следует производить при нагревании на водяной бане до температуры 40—60°С. Ввиду высокой гигроскопичности сохраняют глицерин в хорошо укупоренных емкостях.

Жирные масла (Olea pinguia) представляют собой смеси сложных эфиров глицерина и высших жирных кислот. По внешнему виду—это прозрачные или слегка окрашенные маслянистые жидкости без запаха или со слабым характерным запахом. В медицинской практике применяют только масла, получаемые холодным прессованием.

Жирные масла применяются в технологии ушных и носовых капель, мазей, линиментов, инъекционных растворов и в качестве растворителя для неполярных и малополярных лекарственных средств: камфоры, ментола, фенилсалицилата, кислоты бензойной, фенола кристаллического, тимола, алкалоидов, некоторых витаминов и др. Как все жиры, масла растительные не смешиваются с водой, мало растворимы в спирте этиловом, но легко в эфире и хлороформе.

Для приготовления лекарственных форм чаще всего используют миндальное (Oleum Amygdalarum), персиковое (Oleum Persicorum), оливковое (Oleum Oliuarum), подсолнечное (Oleum Helianthi) масла и др. Качество их регламентируется ГФ для каждого масла определенными показателями: величиной плотности, кислотным, йодным, перекисным числом, числом омыления и др.

Растворение лекарственных веществ в них, как и в глицерине, следует производить при нагревании на водяной бане.

Будучи биологически безвредными, фармакологически индифферентными, масла растительные, к сожалению, обладают невысокой химической стабильностью. Присутствие в их составе ненасыщенных жирных кислот — причина прогоркания растительных масел. При этом в результате окисления и гидролиза жиров образуются перекисные соединения, альдегиды и другие продукты. Масла приобретают неприятный вкус и запах.

Свет, кислород воздуха, а также влага, различные микроорганизмы усиливают эти процессы. Хранят жирные масла в хорошо укупоренных и наполненных доверху емкостях в прохладном защищенном от света месте.

Масло вазелиновое (Oleum vaselini, paraffinum liquidum) —жидкий парафин, представляет собой фракцию нефти, получаемую после отгонки керосина. Это бесцветная, прозрачная маслянистая жидкость, без вкуса и запаха, представляющая смесь предельных углеводородов. Смешивается во всех соотношениях с эфиром, хлороформом, бензином, маслами, кроме касторового, не растворяется в воде и спирте. Масло вазелиновое—хороший растворитель для йода, камфоры, ментола, тимола, йодоформа, кислоты бензойной и других лекарственных средств. По растворяющей способности масло вазелиновое сопоставимо с маслами растительными.

Однако следует отметить, что соединения, содержащие гидроксильные и карбонильные группы, в масле вазелиновом растворяются значительно хуже, чем в жирных маслах. Например, резорцин растворяется в жирных маслах, а в масле вазелиновом — практически нерастворим и т. д.

Масло вазелиновое не всасывается через кожу и слизистые оболочки и замедляет резорбцию лекарственных веществ. Существенным недостатком масла вазелинового является то, что при нанесении на кожу оно в значительной мере препятствует ее газо- и теплообмену, что при воспалительных процессах, безусловно, нежелательно.

По этой причине, а также ввиду ограниченной растворяющей способности, масло вазелиновое в технологии неводных растворов применяется реже, чем масла растительные, главным образом, в растираниях и каплях для носа. Более широко оно используется при приготовлении мазей.

Хранить масло вазелиновое следует в закрытых емкостях в защищенном от света месте.

Димексид (Dimexidum) — диметилсульфоксид. Это сероорганическое соединение, производное серы диоксида, в молекуле которого один атом кислорода замещен двумя метильными группами. В фармацевтическую практику вошел сравнительно недавно, у нас в стране синтезирован в 1966 г. Представляет собой бесцветную, прозрачную жидкость или бесцветные кристаллы со специфическим запахом, очень гигроскопичен. Димексид хорошо смешивается со спиртом этиловым, ацетоном, глицерином, хлороформом, эфиром, маслом касторовым. С водой смешивается во всех пропорциях, в соотношении 2:1 образует с водой гидрат, что сопровождается значительным выделением тепла.

В димексиде легко растворяются лекарственные вещества различной химической природы, обладает свойством быстро проникать через поврежденные ткани, проводя с собой лекарственные вещества. Кроме того, димексид обладает обезболивающим, противовоспалительным и жаропонижающим действиями, а также антимикробной активностью. Эти свойства димексида, наряду с его биологической безвредностью, позволяют предвидеть более широкое его применение в технологии различных лекарственных форм (эмульсий, линиментов, мазей), а также говорить о возможности снижения доз лекарственных веществ в растворах, приготовленных в димексиде.

Хранят димексид в плотно закрытых банках в защищенном от света месте.

При приготовлении жидких лекарств в качестве растворителей также используются ПЭО-400, Эсилон-4, Эсилон-5, характеристика которых дана в главе «Растворы ВМС».

 

ТЕХНОЛОГИЧЕСКИЕ СТАДИИ ПРИГОТОВЛЕНИЯ ЖИДКИХ ЛЕКАРСТВЕННЫХ ФОРМ

Все жидкие лекарственные формы готовят массо-объемным методом, при этом растворяемое вещество берут по массе, а растворитель добавляют до получения требуемого объема раствора. По массе обычно готовят растворы, в которых в качестве растворителя используются жидкости с большой плотностью, вязкие, летучие, а также эмульсии и некоторые лекарственные формы по авторским прописям. По объему готовят растворы спирта этилового различной крепости, растворы стандартных фармакопейных жидкостей.

Если растворитель в рецепте не указан, то готовят водные растворы (вода очищенная).

Процесс приготовления жидких лекарственных форм состоит из следующих стадий: подготовительные работы (подбор соответствующей посуды и пробок к ней); отвешивание и отмеривание лекарственных средств и растворителей; смешивание или растворение, экстрагирование, диспергирование или эмульгирование составных компонентов лекарственного препарата; процеживание или фильтрование; оценка качества и оформление лекарственного препарата к отпуску.

В зависимости от назначения лекарственной формы, растворимости лекарственных веществ и вида растворителя применяют те или иные технологические стадии.

Подбор посуды (флаконов) и пробок. Флакон и пробку подбирают заранее с учетом объема приготовляемых жидких лекарственных форм и свойств их компонентов.

Флакон должен быть чистым и высушенным. Крышка должна навинчиваться на горловину свободно до упора и не проворачиваться. Если жидкие лекарственные препараты содержат светочувствительные вещества, то их помещают во флакон из оранжевого стекла.

Отвешивание и отмеривание. При отвешивании и отмеривании лекарственных веществ руководствуются основными правилами (см. измерение по массе и объему).

Смешивание, растворение, экстрагирование, диспергирование, эмульгирование. Все эти технологические процессы для ЖЛФ служат основанием образования дисперсной системы. Наличие или отсутствие дисперсной фазы при этих процессах зависит от растворимости лекарственных средств в воде или других растворителях.

При приготовлении жидких лекарственных форм путем раство­рения сухих лекарственных веществ руководствуются следующими правилами:

> первым всегда отмеривают в подставку (банку с широким горлом) рассчитанное количество воды очищенной, в которой растворяют сухие лекарственные вещества: сначала ядовитые и сильнодействующие, потом — общего списка с учетом их растворимости и других физико-химических свойств. Такая последовательность приготовления растворов необходима для предотвращения или устранения процессов взаимодействия лекарственных веществ, которые быстрее всего происходят в растворах с высокой концентрацией;

> крупнокристаллические лекарственные вещества (меди сульфат, квасцы, калия перманганат и др.) для ускорения процесса растворения сначала измельчают в ступке с небольшим количеством растворителя;

> термостойкие вещества, которые медленно растворяются (натрия тетраборат, кислота борная, ртути дихлорид, рибофлавин, этакридина лактат и др.), растворяют в горячем растворителе или при нагревании;

> чтобы ускорить процесс растворения, взбалтывают или перемешивают раствор стеклянной палочкой.

При приготовлении жидких лекарственных форм путем смешивания или прибавления жидких компонентов следует руководствоваться такими правилами:

> смешивание жидкостей проводят в порядке увеличения их количества;

> ароматные воды, настойки, жидкие экстракты, спиртовые растворы, вкусовые и сахарные сиропы и другие жидкости добавляют к водному раствору в последнюю очередь во флакон для отпуска в таком порядке: водные непахучие и нелетучие жидкости; спиртовые растворы в порядке увеличения концентрации спирта; пахучие и летучие жидкости;

> жидкие лекарственные средства, содержащие эфирные масла (нашатырно-анисовые капли, грудной эликсир, раствор цитраля и др.), добавляют к микстуре путем смешивания с сахарным сиропом (при его наличии в прописи) или с равным количеством микстуры;

> настойки, нашатырно-анисовые капли и другие летучие жидкости не следует добавлять к теплым растворам;

> лекарственные средства с повышенной вязкостью (ихтиол, густые экстракты и др.) предварительно смешивают в ступке с частью растворителя и после прибавления остального его количества переносят во флакон для отпуска.

Процеживание ( colatio) и фильтрование ( filtratio). Эти процессы используют в аптечной практике для отделения жидкой фазы от всех взвешенных частиц (механических примесей), которые попадают в жидкие лекарственные формы при загрязнении растворителей и растворяющихся веществ, из приборов и посуды в виде волокон, пыли и т. п. Процеживание и фильтрование проводят с помощью воронок, изготовленных из различных материалов, разных вместимостей и видов.

Стеклянные воронки бывают разной формы: под углом 45°, так называемые аптечные, очень удобные для отделения жидкой части лекарственного препарата от незначительных твердых примесей с помощью складчатого фильтра; с шаровидным утолщением возле перехода в узкую часть, куда помещается ватный тампон, удобные для процеживания, а также для фильтрования с процеживанием. Скорость процеживания зависит от плотности укладки ваты в шаровидную часть воронки; под углом 60° — химические, удобные для использования гладких фильтров, предназначенных для сбора осадков, а также при приготовлении инъекционных растворов.

Воронку подбирают таким образом, чтобы в ней помещалось 25— 30% жидкости, которую следует процеживать или фильтровать.

Выбор метода очистки раствора зависит от его назначения. Растворы для внутреннего и наружного применения процеживают, глазные капли, концентрированные и инъекционные растворы — фильтруют.

Процеживание применяют для отделения крупных частиц, для чего жидкость пропускают через комочек ваты или несколько слоев марли, реже—полотно, шелк, капрон и другие ткани.

Гигроскопическая вата должна быть длинноволокнистой и довольно чистой, не содержать кислых, щелочных и восстанавливающих веществ; хлориды, сульфаты, соли кальция допускаются только в минимальных количествах. Наиболее пригодна для процеживания медицинская вата сорта «глазная» (не ниже I сорта, ГОСТ 5556—75).

Марля бытовая хлопчатобумажная (ГОСТ 11109—74) может применяться только обезжиренная, не содержащая примесей крахмала и других веществ. Марлевые фильтры обладают большой пропускной способностью и почти не дают механических загрязнений.

Процеживание растворов проводят через ватный тампон, предварительно промытый водой очищенной для удаления мелких волокон. Чистота лекарств в этом случае будет зависеть от плотности комочка ваты, вложенного в устье воронки. Излишняя твердость ватного тампона нежелательна, так как замедляется скорость процеживания.

Слизи, эмульсии, настои и отвары процеживают через двойной слой марли или полотно.

Фильтрование применяют для отделения всех взвешенных частиц (включая и мельчайшие) с помощью фильтрующего материала, который имеет поры или капиллярные ходы. Слово «фильтр» происходит от лат. filtrum — войлок.

В зависимости от механизма задержания частиц различают фильтры глубинные (пластинчатые) и мембранные (экранные). В глубинном фильтре частицы обычно задерживаются в месте пересечения волокон фильтра, то есть механически или в результате адсорбции на материале фильтра. В качестве глубинных фильтров используют хлопковолокнистые материалы (вату, марлю), стекло в виде спекшегося порошка или волокон, целлюлозно-асбестовые фильтры, материалы из полимерных волокон.

Мембранные фильтры представляют собой сита со средними размерами пор в узком диапазоне. Эти фильтры быстро засоряются, поэтому для фильтрования растворов используют комбинированные фильтры с применением ваты медицинской гигроскопической, бумаги фильтровальной лабораторной и марли бытовой хлопчатобумажной.

Все фильтрующие материалы по своему качеству должны полностью удовлетворять требованиям, приведенным в соответствующей нормативно-технической документации. Они должны обладать определенной прочностью, иметь структуру, обеспечивающую эффективное задержание частиц при высокой проницаемости, не выделять в раствор волокна или частицы, не взаимодействовать с лекарственными веществами, выдерживать термическую стерилизацию, давление или разряжение в процессе фильтрования.

В аптечной практике для фильтрации растворов можно использовать фильтровальную бумагу, которая представляет собой непроклеенную бумагу, получаемую из хлопкового волокна. Согласно принятым стандартам существуют такие виды фильтровальной бумаги: быстрофильтрующая (марка В), среднефильтрующая (С) и медленнофильтрующая (М). Соотношения скорости фильтрации между этими фильтровальными бумагами таковы: В:С:М = 4:2:1. Зольность не должна превышать 0,8 %.

Для отдельных видов работ фильтровальную бумагу обеззоливают, обрабатывая хлористоводородной или фтористоводородной кислотой. Согласно требованиям ГФ XI фильтровальная бумага должна состоять из чистой клетчатки без темных мест и примесей древесины, хлоридов, солей железа (ГОСТ 120-26—76). Если фильтровальная бумага содержит хотя бы незначительные следы солей железа, то при фильтровании раствора натрия салицилата или другого салицилового препарата фильтрат приобретает фиолетовое или розовое окрашивание. Раствор адреналина гидрохлорида теряет свое физиологическое действие.

Для фильтрования жидких лекарственных форм (самотеком) применяют складчатые и гладкие фильтры.

Складчатый фильтр) имеет большую фильтрующую поверхность и благодаря значительному количеству складок плотно не пристает к стенкам воронки, поэтому фильтрование проходит быстро. Делают складчатый фильтр из квадратного куска фильтровальной бумаги, который складывают сначала пополам, а потом несколько раз по диагонали. При складывании фильтра не следует доводить складки к вершине, чтобы узкий конец его получился острым, иначе кончик фильтра размягчается и при фильтровании бумага в этом месте может разорваться. Высота фильтра должна быть ниже от верхнего края воронки на 0,5—1 см, чтобы предотвратить переливание фильтрующей жидкости через край воронки. Конец фильтра должен входить в узкую часть воронки, не «висеть» и не приставать к стенкам ее, а складки фильтра должны прикасаться своими выступающими частями к воронке.

Гладкий фильтр делают из квадратного куска фильтровальной бумаги, вчетверо сложенного и перегнутого по диагонали, наружный конец которого обрезают по кругу. Оттянув один слой, получают конус.

Для фильтрования с помощью гладких фильтров применяют стеклянные воронки под углом 60°.

Для задержания волокон, которые отрываются от наружной поверхности фильтра, и чтобы уберечь его от возможного разрыва, в воронку подкладывают комочек ваты. При фильтровании жидкость наливают понемногу на стенки фильтра, а воронку ставят так, чтобы ее конец был немного ниже шейки флакона (рис. 1).

 
 


Фильтровать и процеживать можно с помощью металлического или деревянного штатива (рис. 2)

Рис 1,2. Фильтрование без и со штативом

Чтобы не загрязнять готовый лекарственный препарат волокнами ваты или бумаги, которые пристают к стенкам флакона и очень трудно отмываются, фильтруют и процеживают сначала часть этого лекарственного препарата, собирают фильтрат в отдельную посуду и затем выливают его снова на фильтр, после чего фильтруют во флакон для отпуска. Нужно при этом иметь в виду адсорбционную способность бумаги и ваты, связанную с некоторой потерей жидких лекарственных препаратов, причем, эта потеря зависит от размеров фильтра и количества взятой ваты. Отсюда размеры фильтра и количество ваты должны быть минимальными. Если жидкие лекарственные препараты готовят в количестве 100мл и более, то такая незначительная потеря не имеет существенного значения, так как она укладывается в установленные нормы.

При фильтровании водных растворов следует иметь в виду, что бумага электризуется отрицательно в результате диссоциации молекул целлюлозы и поэтому при фильтровании (меньше при процеживании) имеют место адсорбционные явления, ведущие к некоторому уменьшению концентрации действующих веществ.

Катионы щелочных и щелочно-земельных металлов адсорбируются мало, катионы тяжелых металлов—значительнее. По адсорбционной способности их можно расположить в определенном порядке (ряд Кольтгоффа):

РЬ2+ > Hg2+ > Саг+ > Ag+ > Zn2t

Значительная адсорбция имеет место при фильтровании растворов алкалоидов, красящих веществ (метиленового синего, этакридина лактата), ферментов (пепсина). Следует иметь в виду, что растворы, содержащие окислители (калия перманганат, серебра нитрат), восстанавливаются клетчаткой. Влияние фильтровальной бумаги и ваты на растворы окислителей зав







Дата добавления: 2015-06-12; просмотров: 8277. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Studopedia.info - Студопедия - 2014-2024 год . (0.013 сек.) русская версия | украинская версия