Модели кривых роста
Плавную кривую (гладкую функцию), аппроксимирующую временной ряд принято называть кривой роста. Аналитические методы выделения (оценки) неслучайной составляющей временного ряда с помощью кривых роста реализуются в рамках моделей регрессии, в которых в роли зависимой переменной выступает переменная yt, а в роли единственной объясняющей переменной - время t. Наиболее часто в практической работе используются кривые роста, которые позволяют описывать процессы трех основных типов: без предела роста; с пределом роста без точки перегиба; с пределом роста и точкой перегиба. Для описания процессов без предела роста служат функции: прямая (полином первой степени) - Процессы развития такого типа характерны в основном для абсолютных объемных показателей. Например, объём продаж пива с1992 г. по 2003 г.[ Россия в цифрах. 2004. Госкомстат России. - М., 2004] (табл. 3.4.9) может быть описан полиномом второй степени (рис. 3.4.8).
Табл. 3 4.9. Продажа пива (млн. дкл.)
Рис. 3.4.8. Тенденция продаж пива (млн. дкл.) может быть описана полиномом второй степени
Для описания процессов с пределом роста служат функции: кривая Джонсона, модифицированная экспонента и др. Процессы с пределом роста характерны для многих относительных показателей (душевое потребление продуктов питания, внесение удобрений на единицу площади, затраты на один рубль произведенной продукции и т.п.). Для описания процессов третьего типа - с пределом роста и точкой перегиба используются кинетическая кривая (кривая Перла - Рида) и кривая Гомперца. Такой тип развития характерен для спроса на некоторые новые товары. Математические методы позволяют представить прогнозирующую модель в виде полинома любого порядка. Однако без необходимости использование полиномов высокого порядка представляется излишним. Параметры моделей могут быть содержательно интерпретированы. Так, параметр а0 во всех моделях без предела роста задает начальные условия развития, а в моделях с пределом роста - асимптоту функций, параметр а1 определяет скорость или интенсивность развития, параметр а2 - изменение скорости или интенсивности развития. Параметры большинства "кривых роста", как правило, оцениваются по методу наименьших квадратов, т.е. подбираются таким образом, чтобы график функции "кривой роста" располагался на минимальном удалении от точек исходных данных. Согласно методу наименьших квадратов при оценке параметров модели всем наблюдениям присваиваются равные веса, т.е. их информационная ценность признается равной, а тенденция развития на всем участке наблюдений – неизменной. Предпочтение, как правило, отдается простым моделям, допускающим содержательную интерпретацию. К числу таких моделей относится линейная модель роста
где Математически критерий оценки параметров модели записывается в виде:
Для нахождения минимума функции двух переменных
Решая систему двух линейных уравнений с двумя неизвестными, получим
где
|