Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методологические, психофизиологические и психолого-педагогические основы математического образования дошкольников





Подготовка детей к усвоению грамоты.

Грамота- развитый фонематический (речевой) слух, хорошую устную речь, правильно поставленные первоначальные навыки в составлении и анализе предложений, в делении слов на слоги, умели держать карандаш и различать строчки в тетради. (Л. С. Выготский, Л. И. Божович, А. П. Усова, Е. И. Тихеевой и Ю. И. Фаусек). С началом обучения грамоте ребенок приступает к анализу своей речи и узнает, что она состоит из предложений, которые в свою очередь состоят из отдельных слов, слова — из слогов, слоги — из звуков. в период обучения грамоте большое место отводится развитию фонематического слуха, умению различать в речевом потоке отдельные слова, звуки в слове. Чтобы научиться читать и писать, ребенок должен понять, что речь рождается из слов, он должен усвоить звукослоговое строение слов русской речи и обозначение звуков буквами. Огромное внимание учитель на занятиях по обучению грамоте уделяет практическому изучению детьми звуков речи и способов их буквенного обозначения. Дети постепенно запоминают изображения букв, соединяя каждое из них с определенным звуком, учатся соединять их в слова и соотносить слова и предложения письменной речи с соответствующими словами и фразами устной речи. Обучение грамоте осуществляется в теснейшей связи с работой по развитию речи, по уяснению детьми смысла слова и его звукослоговой структуры. Под развитием речи понимается работа над произношением, словом, предложением и связной речью. Занятия по обучению грамоте, таким образом, связываются с занятиями по изучению родного языка. Конкретные восприятия и представления детей являются основой для формирования у них правильных понятий и умений выражать свои впечатления и мысли в речи. во второй младшей группе формируется умение вслушиваться в звучание слова, детей знакомят (в практическом плане) с терминами «слово», «звук». В средней группе детей знакомят с терминами «слово», «звук» практически, без определений, т.е. учат понимать и употреблять эти слова при выполнении упражнений, в речевых играх. В старшей группе учат: производить анализ слов различной звуковой структуры; выделять словесное ударение и определять его место в структуре слова; качественно характеризовать выделяемые звуки (гласные, твердый согласный, мягкий согласный, ударный гласный, безударный гласный звук); правильно употреблять соответствующие термины.В подготовительной к школе группе завершается работа по овладению основами грамоты. Здесь предусматривается обучение детей чтению и письму. К концу года дети должны: научиться читать со скоростью 30-40 слов в мин, записывать слова в тетрадной строке, соблюдая тип соединения букв и четкое письмо их основных элементов; освоить позу пишущего.Этапы обучения грамоте, чтению формирование фонемного анализа слов и общей ориентировки в фонемной системе языка;освоение системы гласных фонем, их обозначения буквами и формирование ориентации на гласные буквы и фонемы;освоение системы согласных фонем, их обозначения буквами и формирование основного механизма чтения.Направления. ознакомление детей со словом;ознакомление с предложением;ознакомление со словесным составом предложения - деление предложения на слова и составление из слов (2 - 4) предложений;ознакомление со слоговым строением слова;ознакомление со звуковым строением слов, формирование навыков звукового анализа слов: определение количества, последовательности звуков (фонем) и составление слов с определенными звуками, понимающие смыслоразличительной роли фонемы.приемы: четкое произнесение слов с паузой;произнесение слов под хлопки;последовательное называние слов в предложении;в громкой речи, про себя;произнесение слов по рядам;шепотный анализ предложения;составление предложений с заданным словом;составление предложений по «живой сценке»;перепрыгивание через скакалку;отстукивание на барабане или бубне столько раз, сколько слов в предложении.

 

Содержание математического развития ребенка.

Математическое развитие детей дошкольного возраста осуществляется как в результате приобретения ребенком знаний в повседневной жизни (прежде всего, в результате общения со взрослым), так и путем целенаправленного обучения на занятиях по формированию элементарных математических знаний. Именно элементарные математические знания и умения детей следует рассматривать как главное средство математического развития.

В процессе обучения у детей развивается способность точнее и полнее воспринимать окружающий мир, выделять признаки предметов и явлений, раскрывать их связи, замечать свойства, интерпретировать наблюдаемое; формируются мыслительные действия, приемы умственной деятельности, создаются внутренние условия для перехода к новым формам памяти, мышления и воображения (Г. С. Костюк).

Психологические экспериментальные исследования и педагогический опыт свидетельствуют о том, что благодаря

систематическому обучению дошкольников математике у них формируются сенсорные, перцептивные, мыслительные, вербальные, мнемические и другие компоненты общих и специальных способностей. Задатки индивида превращаются в конкретные способности посредством учения (В. В. Давыдов, Л. В. Занков и др.).

Разница в уровнях развития детей, как показывает опыт, выражается главным образом в том, какими темпами и с какими успехами они овладевают знаниями.

Однако при всем важном значении обучения в психическом развитии личности последнее нельзя сводить к учению. Развитие не исчерпывается теми изменениями личности, которые являются прямым следствием обучения (Г. С. Костюк). Оно характеризуется теми «умственными поворотами», которые происходят в голове ребенка, когда он научается говорить, читать, считать, усваивает социальный опыт, передаваемый ему взрослым (И. И. Сеченов).

Как показывают исследования (А. В. Запорожец, Д. Б. Эль-конин, В. В. Давыдов и др.), развитие идет дальше того, что усваивается в тот или иной момент обучения. В процессе и под влиянием обучения происходит целостное, прогрессирующее изменение личности, ее взглядов, чувств, способностей. Благодаря обучению расширяются возможности дальнейшего усвоения нового, более сложного материала, создаются новые резервы обучения.

Между обучением и развитием существует взаимная связь. Обучение активно содействует развитию ребенка, но и само опирается на его уровень развития. В этом процессе многое зависит от того, насколько обучение нацелено на развитие.

Обучение может по-разному развивать ребенка в зависимости от его содержания и методов. Именно содержание и его структура являются гарантами математического развития ребенка.

В методике вопрос «чему учить?» всегда был и остается одним из основных вопросов. Давать ли детям основы научных знаний, вооружать ли их только набором конкретных умений, при помощи которых они имели бы некоторую практическую ориентировку, — это важная проблема дидактики детского сада.

Содержание математического развития отражено в программе обучения детей математике, и условно его можно разделить на три таких направления:

§ представления и понятия;

§ зависимости и отношения;

§ математические действия.

Отобрать познавательный материал для изучения с учетом его значимости и в соответствии с возможностями детей — дело весьма непростое. В принципе содержание обучения, т. е. программа по формированию элементов математики, отрабатывалась на протяжении многих лет. В последние 50 лет этот процесс осуществлялся на базе экспериментальных исследований (А. М. Леушина, В. В. Данилова, Т. В. Таруїітаева, Р. Л. Березина, Г. А. Корнеева, Н. И. Непомнящая и ДР-)-

Под содержанием обучения понимается объем и характер знаний, умений и навыков, которыми должны овладеть дети в процессе организации разных видов деятельности.

Анализ различных (вариативных) программ по математике в детском саду позволяет заключить, что основном в их содержании является достаточно разнообразный круг представлений и понятий: «количество», «число», «множество», «подмножество», «величина», «мера», «форма предмета» и «геометрические фигуры»; представления и понятия о пространстве (направления, расстояния, взаимное расположение предметов в пространстве) и времени (единицы измерения времени, некоторые его особенности).

При этом важно подчеркнуть, что каждое математическое понятие формируется постепенно, поэтапно, по линейно-концентрическому принципу. Разные математические понятия тесно связаны между собой. Так, в работе с детьми четвертого года жизни основное внимание уделяется формированию знаний о множестве. Дети учатся сравнивать «контрастные» и «смежные» множества (много и один; больше (меньше) на один). В дальнейшем, в группах пятого, шестого, седьмого годов жизни, знания о множестве углубляются, поскольку дети сравнивают множество элементов по количеству составляющих, делят множество на подмножества, устанавливая зависимости между целым и его частями и т. п.

На основе представлений о множестве у детей формируются представления и понятия о числах и величинах и т. д. Усваивая понятия о числах, ребенок учится абстрагировать количественные отношения от всех других особенностей элементов множества (величина, цвет, форма). Это требует от ребенка умения выделять отдельные свойства предметов, сравнивать, обобщать, делать выводы.

Формирование понятия о величине тесно связано с развитием у детей числовых представлений. Сформированное^ оценок величины, знаний о числе позитивно влияет на формирование знаний о форме предметов (у квадрата 4 стороны, все стороны равны, а у прямоугольника — только противоположные и т. д.).

В дошкольном возрасте основные математические понятия вводятся описательно. Так, при ознакомлении с числом дети упражняются в счете конкретных предметов, реальных и нарисованных (считают девочек и мальчиков, зайчиков и лисичек, круги и квадраты), попутно знакомятся с простейшими геометрическими фигурами, без всяких определений и даже описаний этих понятий. Точно так же дети усваивают понятия: «больше», «меньше»; «один», «два», «три»; «первый», «второй», «последний» и т. д.

Каждое понятие вводится наглядно, путем созерцания конкретных предметов или практического оперирования ими.

В период дошкольного детства, как отмечают Н. Н. Под-дьяков, А. А. Столяр и др., имеется достаточно обширная область «предпонятийных», «житейских» понятий. Содержание «житейских» понятий очень расплывчато, диффузно, оно охватывает самые различные формы, предшествующие настоящим понятиям. Тем не менее «житейские» понятия важны для математического развития ребенка в целом.

Специфическая особенность «житейских» понятий такова, что они построены на основе обобщения признаков предметов, существенных с точки зрения каких-либо нужд человека, выполнения им различных видов практической деятельности.

Интересные данные в этом плане были получены 3. М. Богуславской (1955), изучавшей особенности формирования обобщений у детей различных дошкольных возрастов в процессе дидактической игры. У младших дошкольников познавательная деятельность была подчинена решению той или иной конкретной игровой задаче и обслуживала ее. Дети усваивали лишь те сообщаемые им сведения, которые были необходимы для достижения определенного практического эффекта в игре. Усвоение знаний носило утилитарный характер. Приобретаемые знания тут же применялись для выполнения заданной группировки картинок.

У старших дошкольников познавательная деятельность в процессе дидактических игр выходила за рамки лишь непосредственного обслуживания практических задач, теряя сугубо эмпирический характер, и выступала уже в форме развернутой содержательной деятельности с характерными специфическими способами осуществления. В результате формируемые у детей представления и понятия достаточно полно и адекватно отражали определенный круг явлений.

Вторым направлением в обучении дошкольников математике является ознакомление детей с рядом математических зависимостей и отношений. Так, дети осознают некоторые отношения между предметными множествами (равно-численность — неравночисленность), отношение порядка в натуральном ряду, временные отношения; зависимости между свойствами геометрических фигур, между величиной, мерой и результатом измерения и др.

Особо следует выделить требования к формированию у детей определенных математических действий: накладывания, прикладывания, пересчитывания, отсчитывания, измерения и т. д. Именно овладение действиями оказывает наибольшее влияние на развитие.

В методике выделяются две группы математических действий:

§ основные (счет, измерение, вычисления);

§ дополнительные, пропедевтические, сконструированные в дидактических целях (практическое сравнение, наложение, приложение (А. М. Леушина); уравнивание и комплектование (В. В. Давыдов); сопоставление (Н. И. Непомнящая)).

Как видим, содержание «предматематической» подготовки (А. А. Столяр) в детском саду имеет свои особенности. Они объясняются:

§ спецификой математических понятий;

§ традициями в обучении дошкольников;

§ требованиями современной школы к математическому развитию детей.

Учебный материал запрограммирован так, чтобы на основе уже усвоенных более простых знаний и способов деятельности у детей формировались новые, которые, в свою очередь, будут выступать предпосылкой становления сложных знаний и умений и т. д.

В процессе обучения, наряду с формированием у детей практических действий, формируются познавательные (умственные), которыми без помощи взрослых ребенок овладеть не может. Именно им, умственным действиям, принадлежит ведущая роль, т. к. объектом познания в математике являются скрытые количественные отношения, алгоритмы, взаимосвязи.

Весь процесс формирования элементов математики непосредственно связан с усвоением специальной терминологии. Слово делает понятие осмысленным, подводит к обобщениям, к абстрагированию.

Особое место в реализации содержания обучения (программных задач) занимает планирование учебно-воспитательной работы на занятиях и вне их в форме перспективного и календарного плана. Значительную помощь в работе воспитателя могут оказать ориентировочные перспективные планы; планы-конспекты занятий по математике. Эти планы и конспекты воспитатель должен использовать именно как ориентировочные, при этом следует постоянно сопоставлять их содержание с уровнем математического развития детей данной группы.

План-конспект занятий по математике включает такие структурные компоненты, как тема занятия, программные задачи, активизация словаря детей, дидактический материал, ход занятия (методические приемы, использование их в разных частях занятия).

Воспитатель проводит занятия в соответствии с планом. Каждое занятие, независимо от его длительности и формы проведения, — это организационно, логически и психологически завершенное целое. Организационная целостность и завершенность занятия заключается в том, что оно начинается и заканчивается в четко отведенное для этого время.

Логическая целостность заключается в содержании занятия, в логических переходах от одной части занятия к другой.

Психологическая целостность характеризуется достижением цели, чувством удовлетворения, желанием продолжать работу дальше.

Щербакова Е. И. Теория и методика математического развития дошкольников: Учеб. пособие

 







Дата добавления: 2015-06-12; просмотров: 2543. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия