Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Абсолютные и средние показатели вариации





Для характеристики совокупностей и исчисленных величин важно знать, какая вариация изучаемого признака скрывается за средним.

Для характеристики колеблемости признака используется ряд показателей.

Размах колебаний (размах вариации) – это разность между наибольшим () и наименьшим () значениями вариантов .

Среднее линейное отклонение вычисляется по следующим формулам:

- для несгруппированных данных

- для сгруппированных данных (вариационного ряда)

Основными обобщающими показателями вариации в статистике являются дисперсии и среднеквадратическое отклонение.

Дисперсия – это средняя арифметическая квадратов отклонений каждого значения признака от общей средней. Дисперсия обычно называется средним квадратом отклонений и обозначается и рассчитывается по следующим формулам:

– дисперсия невзвешенная (простая);

– дисперсия взвешенная.

Дисперсию удобнее рассчитывать по формуле: , где – среднее квадрата, – квадрат средней.

Дисперсия имеет большое значение в статистическом анализе. Однако её применение как меры вариации в ряде случаев бывает не совсем удобным, потому что размерность дисперсии равна квадрату размерности изучаемого признака. В таких случаях для измерения вариации признака вычисляют среднеквадратическое отклонение.

Среднеквадратическое отклонение представляет собой корень квадратный из дисперсии и обозначается S:

Среднеквадратическое отклонение – это обобщающая характеристика абсолютных размеров вариации признака в совокупности.

Выражается оно в тех же единицах измерения, что и признак (в метрах, тоннах, процентах, гектарах и т.д.).

Среднеквадратическое отклонение является мерилом надежности средней. Чем меньше среднеквадратическое отклонение, тем лучше средняя арифметическая отражает собой всю представляемую совокупность. Вычислению среднеквадратического отклонения предшествует расчет дисперсии.

Основные свойства дисперсии.

- Уменьшение или увеличение весов (частот) варьирующего признака в определенное число раз дисперсии не изменяет;

- Уменьшение или увеличение каждого значения признака на одну и ту же постоянную величину А дисперсии не изменяет;

- Уменьшение или увеличение каждого значения признака в раз соответственно уменьшает или увеличивает дисперсию в раз, а среднеквадратическое отклонение – в раз;

- Дисперсия признака относительно произвольной величины всегда больше дисперсии относительно средней арифметической на квадрат разности между средней и произвольной величиной: . Если А равна нулю, то приходим к следующему равенству: , т.е. дисперсия признака равна разности между средним квадратом значений признака и квадратом средней.

Каждое свойство при расчете дисперсии может быть применено самостоятельно или в сочетании с другими.

 







Дата добавления: 2015-06-12; просмотров: 366. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия